Alternating Sum and Difference of Binomial Coefficients for Given n/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \forall n \in \Z: \sum_{i \mathop = 0}^n \paren {-1}^i \binom n i = \delta_{n 0}$


Proof

Lemma

$\ds \sum_{i \mathop = 0}^0 \binom 0 0 = 1$

$\Box$


Let $n > 0$.

From the Binomial Theorem, we have that:

$\ds \forall n \in \Z_{\ge 0}: \paren {x + y}^n = \sum_{i \mathop = 0}^n \binom n i x^{n - i} y^i$


Putting $x = 1, y = -1$, we get:

\(\ds 0\) \(=\) \(\ds \paren {1 - 1}^n\) which holds for all $n > 0$
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 0}^n \binom n i 1^{n - i} \paren {-1}^i\)
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 0}^n \paren {-1}^i \binom n i\)

$\blacksquare$


Sources