Properties of Sine Function

From ProofWiki
Jump to: navigation, search

Theorem

Let $x \in \R$ be a real number.

Let $\sin x$ be the sine of $x$.


Then:

Sine Function is Continuous

$\sin x$ is continuous on $\R$.


Sine Function is Absolutely Convergent

$\sin x$ is absolutely convergent for all $x \in \R$.


Sine of Zero is Zero

$\sin 0 = 0$


Sine Function is Odd

$\sin \left({-x}\right) = -\sin x$

That is, the sine function is odd.


Sine of Multiple of Pi

$\forall n \in \Z: \sin n \pi = 0$


Sine of Half-Integer Multiple of Pi

$\forall n \in \Z: \sin \left({n + \dfrac 1 2}\right) \pi = \left({-1}\right)^n$


Shape of Sine Function

The sine function is:

$(1): \quad$ strictly increasing on the interval $\left[{-\dfrac \pi 2 \,.\,.\, \dfrac \pi 2}\right]$
$(2): \quad$ strictly decreasing on the interval $\left[{\dfrac \pi 2 \,.\,.\, \dfrac {3 \pi} 2}\right]$
$(3): \quad$ concave on the interval $\left[{0 \,.\,.\, \pi}\right]$
$(4): \quad$ convex on the interval $\left[{\pi \,.\,.\, 2 \pi}\right]$


Also see