Completion of Valued Field

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {k, \norm {\,\cdot\,} }$ be a valued field.

Then there exists a completion $\struct {k', \norm {\,\cdot\,}'}$ of $\struct {k, \norm {\,\cdot\,} }$ such that $\struct {k', \norm {\,\cdot\,}'}$ is a valued field.

Furthermore, every completion of $\struct{k, \norm {\,\cdot\,} }$ is isometrically isomorphic to $\struct {k', \norm {\,\cdot\,}'}$.


Proof

By Completion of Normed Division Ring then $\struct {k, \norm {\, \cdot \,} }$ has a normed division ring completion $\struct {k', \norm {\, \cdot \,}'}$

By Normed Division Ring is Field iff Completion is Field then $\struct {k', \norm {\, \cdot \,}'}$ is a field.

By Normed Division Ring Completions are Isometric and Isomorphic then every completion of $\struct {k, \norm {\,\cdot\,} }$ is isometrically isomorphic to $\struct {k', \norm {\,\cdot\,}'}$.

$\blacksquare$


Examples