Definition:Gamma Function

From ProofWiki
Jump to navigation Jump to search

Definition

Integral Form

The gamma function $\Gamma: \C \setminus \Z_{\le 0} \to \C$ is defined, for the open right half-plane, as:

$\ds \map \Gamma z = \map {\MM \set {e^{-t} } } z = \int_0^{\to \infty} t^{z - 1} e^{-t} \rd t$

where $\MM$ is the Mellin transform.


For all other values of $z$ except the non-positive integers, $\map \Gamma z$ is defined as:

$\map \Gamma {z + 1} = z \map \Gamma z$


Weierstrass Form

The Weierstrass form of the gamma function is:

$\ds \frac 1 {\map \Gamma z} = z e^{\gamma z} \prod_{n \mathop = 1}^\infty \paren {\paren {1 + \frac z n} e^{-z / n} }$

where $\gamma$ is the Euler-Mascheroni constant.


The Weierstrass form is valid for all $\C$.


Hankel Form

The Hankel form of the gamma function is:

$\ds \frac 1 {\map \Gamma z} = \dfrac 1 {2 \pi i} \oint_\HH \frac {e^t \rd t} {t^z}$

where $\HH$ is the contour starting at $-\infty$, circling the origin in an anticlockwise direction, and returning to $-\infty$.


The Hankel form is valid for all $\C$.


Euler Form

The Euler form of the gamma function is:

$\ds \map \Gamma z = \frac 1 z \prod_{n \mathop = 1}^\infty \paren {\paren {1 + \frac 1 n}^z \paren {1 + \frac z n}^{-1} } = \lim_{m \mathop \to \infty} \frac {m^z m!} {z \paren {z + 1} \paren {z + 2} \cdots \paren {z + m} }$

which is valid except for $z \in \set {0, -1, -2, \ldots}$.


Partial Gamma Function

Let $m \in \Z_{\ge 0}$.

The partial gamma function at $m$ is defined as:

$\ds \map {\Gamma_m} z := \frac {m^z m!} {z \paren {z + 1} \paren {z + 2} \cdots \paren {z + m} }$

which is valid except for $z \in \set {0, -1, -2, \ldots, -m}$.


Graph of Gamma Function

The graph of the gamma function is illustrated here for real arguments.


The gamma function: $\map \Gamma z$ (red solid line) and $\dfrac 1 {\map \Gamma z}$ (blue broken line)


The gamma function:

$\map \Gamma z$ (red solid line)
$\dfrac 1 {\map \Gamma z}$ (blue broken line)


Also known as

Some authors refer to the gamma function as Euler's gamma function, after Leonhard Paul Euler.

Some French sources call it the Eulerian function.


Examples

Gamma Function of $4$

$\map \Gamma 4 = 6$


Gamma Function of $\dfrac 1 2$

$\map \Gamma {\dfrac 1 2} = \sqrt \pi$


Gamma Function of $\dfrac 1 3$

$\map \Gamma {\dfrac 1 3} = 2 \cdotp 67893 \, 85347 \, 07747 \, 63 \ldots$


Gamma Function of $\dfrac 1 4$

$\map \Gamma {\dfrac 1 4} = 3 \cdotp 62560 \, 99082 \, 21908 \ldots$


Also see

  • Results about the gamma function can be found here.


Historical Note

The symbol $\map \Gamma z$ for the gamma function was introduced by Adrien-Marie Legendre.