Definition:Inverse (Abstract Algebra)/Inverse

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\struct {S, \circ}$ be an algebraic structure with an identity element $e_S$.

Let $x, y \in S$ be elements.


The element $y$ is an inverse of $x$ if and only if:

$y \circ x = e_S = x \circ y$

that is, if and only if $y$ is both:

a left inverse of $x$

and:

a right inverse of $x$.


Also known as

An inverse of $x$ is also known as a two-sided inverse of $x$, symmetric element or negative of $x$.

Some sources refer to it as a reciprocal element, which terminology is borrowed from the real numbers under multiplication.


The notation used to represent an inverse of an element is often understood to depend on the set and binary operation under consideration.

Various symbols are seen for a general inverse, for example $\hat x$, $x'$ and $x^*$.


In multiplicative notation:

If $s \in S$ has an inverse, it is denoted $s^{-1}$.

If the operation concerned is commutative, then additive notation is often used:

If $s \in S$ has an inverse, it is denoted $-s$.


Examples

Addition Modulo $6$

Consider the additive group of integers modulo $6$, whose Cayley table is given below:


$\begin{array}{r|rrrrrr}

\struct {\Z_6, +_6} & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \hline \eqclass 0 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \eqclass 1 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 & \eqclass 0 6 \\ \eqclass 2 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 & \eqclass 0 6 & \eqclass 1 6 \\ \eqclass 3 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 \\ \eqclass 4 6 & \eqclass 4 6 & \eqclass 5 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 \\ \eqclass 5 6 & \eqclass 5 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 \\ \end{array}$


Each element of this group is invertible.


Multiplication Modulo $6$

Consider the multiplicative monoid of integers modulo $6$ , whose Cayley table is given below:


$\quad \begin{array} {r|rrrrrr} \struct {\Z_6, \times_6} & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \hline \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 \\ \eqclass 1 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \eqclass 2 6 & \eqclass 0 6 & \eqclass 2 6 & \eqclass 4 6 & \eqclass 0 6 & \eqclass 2 6 & \eqclass 4 6 \\ \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 \\ \eqclass 4 6 & \eqclass 0 6 & \eqclass 4 6 & \eqclass 2 6 & \eqclass 0 6 & \eqclass 4 6 & \eqclass 2 6 \\ \eqclass 5 6 & \eqclass 0 6 & \eqclass 5 6 & \eqclass 4 6 & \eqclass 3 6 & \eqclass 2 6 & \eqclass 1 6 \end{array}$


The only invertible elements of this group are $\eqclass 1 6$ and $\eqclass 5 6$.


Symmetry Group of Square

Consider the symmetry group of the square:


Let $\SS = ABCD$ be a square.

SymmetryGroupSquare.png

The various symmetry mappings of $\SS$ are:

the identity mapping $e$
the rotations $r, r^2, r^3$ of $90^\circ, 180^\circ, 270^\circ$ around the center of $\SS$ anticlockwise respectively
the reflections $t_x$ and $t_y$ are reflections in the $x$ and $y$ axis respectively
the reflection $t_{AC}$ in the diagonal through vertices $A$ and $C$
the reflection $t_{BD}$ in the diagonal through vertices $B$ and $D$.

This group is known as the symmetry group of the square, and can be denoted $D_4$.


Each element of this group is invertible, for example:

$r^{-1} = r^3$
${t_x}^{-1} = t_x$


Also see

  • Results about inverse elements can be found here.


Sources