Equivalence of Definitions of Normal Subset

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Normal Subset are equivalent:

Definition 1

$\forall g \in G: g \circ S = S \circ g$

Definition 2

$\forall g \in G: g \circ S \circ g^{-1} = S$

or, equivalently:

$\forall g \in G: g^{-1} \circ S \circ g = S$

Definition 3

$\forall g \in G: g \circ S \circ g^{-1} \subseteq S$

or, equivalently:

$\forall g \in G: g^{-1} \circ S \circ g \subseteq S$

Definition 4

$\forall g \in G: S \subseteq g \circ S \circ g^{-1}$

or, equivalently:

$\forall g \in G: S \subseteq g^{-1} \circ S \circ g$

Definition 5

$\forall x, y \in G: x \circ y \in S \implies y \circ x \in S$

Definition 6

$\map {N_G} S = G$

where $\map {N_G} S$ denotes the normalizer of $S$ in $G$.

Definition 7

$\forall g \in G: g \circ S \subseteq S \circ g$

or:

$\forall g \in G: S \circ g \subseteq g \circ S$


Proof

Definition 1 is Equivalent to Definition 2

Let $e$ be the identity of $G$.

First note that:

$(4): \quad \paren {\forall g \in G: g \circ S \circ g^{-1} = S} \iff \paren {\forall g \in G: g^{-1} \circ S \circ g = S}$

which is shown by, for example, setting $h := g^{-1}$ and substituting.


Necessary Condition

Suppose that $S$ satisfies $(1)$.


Let $g \in G$.

Then:

\(\ds g \circ S\) \(=\) \(\ds S \circ g\) $(1)$
\(\ds \leadsto \ \ \) \(\ds \paren {g \circ S} \circ g^{-1}\) \(=\) \(\ds \paren {S \circ g} \circ g^{-1}\)
\(\ds \leadsto \ \ \) \(\ds g \circ S \circ g^{-1}\) \(=\) \(\ds S \circ \paren {g \circ g^{-1} }\) Subset Product within Semigroup is Associative: Corollary
\(\ds \leadsto \ \ \) \(\ds g \circ S \circ g^{-1}\) \(=\) \(\ds S \circ e\) Definition of Inverse Element
\(\ds \leadsto \ \ \) \(\ds g \circ S \circ g^{-1}\) \(=\) \(\ds S\) Subset Product by Identity Singleton
\(\ds \leadsto \ \ \) \(\ds g^{-1} \circ S \circ g\) \(=\) \(\ds S\) $(4)$

$\Box$


Sufficient Condition

Suppose that $S$ satisfies $(2)$ or $(3)$.

By $(4)$, as long as one of these statements holds, the other one holds as well.


Let $g \in G$.

Then:

\(\ds g \circ S \circ g^{-1}\) \(=\) \(\ds S\)
\(\ds \leadsto \ \ \) \(\ds \paren {g \circ S \circ g^{-1} } \circ g\) \(=\) \(\ds S \circ g\)
\(\ds \leadsto \ \ \) \(\ds \paren {g \circ S} \circ \paren {g^{-1} \circ g}\) \(=\) \(\ds S \circ g\) Subset Product within Semigroup is Associative: Corollary
\(\ds \leadsto \ \ \) \(\ds \paren {g \circ S} \circ e\) \(=\) \(\ds S \circ g\) Definition of Inverse Element
\(\ds \leadsto \ \ \) \(\ds g \circ S\) \(=\) \(\ds S \circ g\) Subset Product by Identity Singleton

$\blacksquare$


Definition 2 Implies Definition 3

We have that:

$\left({\forall g \in G: g \circ S \circ g^{-1} = S}\right) \iff \left({\forall g \in G: g^{-1} \circ S \circ g = S}\right)$

The result follows by definition of set equality.

$\blacksquare$


Definition 3 is Equivalent to Definition 4

First note that:

$(5): \quad \paren {\forall g \in G: g \circ S \circ g^{-1} \subseteq S} \iff \paren {\forall g \in G: g^{-1} \circ S \circ g \subseteq S}$
$(6): \quad \paren {\forall g \in G: S \subseteq g \circ S \circ g^{-1}} \iff \paren {\forall g \in G: S \subseteq g^{-1} \circ S \circ g}$

which is shown by, for example, setting $h := g^{-1}$ and substituting.

Therefore:

conditions $(1)$ and $(2)$ are equivalent

and:

conditions $(3)$ and $(4)$ are equivalent.

It remains to be shown that condition $(1)$ is equivalent to condition $(3)$.


Suppose that $(1)$ holds.

Then:

\(\ds \forall g \in G: \, \) \(\ds g \circ S \circ g^{-1}\) \(\subseteq\) \(\ds S\)
\(\ds \leadsto \ \ \) \(\ds g^{-1} \circ \paren {g \circ S \circ g^{-1} }\) \(\subseteq\) \(\ds g^{-1} \circ S\) Subset Relation is Compatible with Subset Product/Corollary 2
\(\ds \leadsto \ \ \) \(\ds S \circ g^{-1}\) \(\subseteq\) \(\ds g^{-1} \circ S\) Subset Product within Semigroup is Associative/Corollary and the definition of inverse
\(\ds \leadsto \ \ \) \(\ds \paren {S \circ g^{-1} } \circ g\) \(\subseteq\) \(\ds \paren { g^{-1} \circ S} \circ g\) Subset Relation is Compatible with Subset Product/Corollary 2
\(\ds \leadsto \ \ \) \(\ds S\) \(\subseteq\) \(\ds g^{-1} \circ S \circ g\) Subset Product within Semigroup is Associative/Corollary and the definition of inverse

Thus condition $(1)$ implies condition $(3)$.

The exact same argument, substituting $\supseteq$ for $\subseteq$ and using Superset Relation is Compatible with Subset Product instead of Subset Relation is Compatible with Subset Product proves that $(3)$ implies $(1)$.




$\blacksquare$


Definitions 3 and 4 imply Definition 2

By Equivalence of Definitions of Normal Subset: 3 iff 4, $S$ being a normal subset of $G$ by Definition 3 and Definition 4 implies that the following hold:

$(1)\quad \forall g \in G: g \circ S \circ g^{-1} \subseteq S$
$(2)\quad \forall g \in G: g^{-1} \circ S \circ g \subseteq S$
$(3)\quad \forall g \in G: S \subseteq g \circ S \circ g^{-1}$
$(4)\quad \forall g \in G: S \subseteq g^{-1} \circ S \circ g$

By $(1)$ and $(3)$ and definition of set equality:

$\forall g \in G: g \circ S \circ g^{-1} = S$

By $(2)$ and $(4)$ and definition of set equality:

$\forall g \in G: g^{-1} \circ S \circ g = S$

$\blacksquare$


Definition 3 is Equivalent to Definition 5

3 implies 5

Suppose that $S$ is a normal subset of $G$ by Definition 3.

That is:

$\forall g \in G: g^{-1} \circ S \circ g \subseteq S$.


Let $x, y \in G$ such that $x \circ y \in S$.

Then:

\(\ds y \circ x\) \(=\) \(\ds e \circ \paren {y \circ x}\) Group Axiom $\text G 2$: Existence of Identity Element
\(\ds \) \(=\) \(\ds \paren {x^{-1} \circ x} \circ \paren {y \circ x}\) Group Axiom $\text G 3$: Existence of Inverse Element
\(\ds \) \(=\) \(\ds x^{-1} \circ \paren {x \circ y} \circ x\) Group Axiom $\text G 1$: Associativity
\(\ds \leadsto \ \ \) \(\ds y \circ x\) \(\in\) \(\ds x^{-1} \circ S \circ x\) $x \circ y \in S$
\(\ds \leadsto \ \ \) \(\ds y \circ x\) \(\in\) \(\ds S\) by hypothesis: Definition 3 of Normal Subset

$\Box$


5 implies 3

Suppose that $S$ is a normal subset of $G$ by Definition 5.

That is:

$\forall x, y \in G: x \circ y \in S \implies y \circ x \in S$


Let $g \in G$.

Then:

\(\ds \forall x \in S: \, \) \(\ds e \circ x \circ e\) \(\in\) \(\ds S\) Group Axiom $\text G 2$: Existence of Identity Element
\(\ds \leadsto \ \ \) \(\ds \forall x \in S: \, \) \(\ds \paren {g \circ g^{-1} } \circ x \circ \paren {g \circ g^{-1} }\) \(\in\) \(\ds S\) Group Axiom $\text G 3$: Existence of Inverse Element
\(\ds \leadsto \ \ \) \(\ds \forall x \in S: \, \) \(\ds g \circ \paren {g^{-1} \circ x \circ g \circ g^{-1} }\) \(\in\) \(\ds S\) Group Axiom $\text G 1$: Associativity
\(\ds \leadsto \ \ \) \(\ds \forall x \in S: \, \) \(\ds \paren {g^{-1} \circ x \circ g \circ g^{-1} } \circ g\) \(\in\) \(\ds S\) by hypothesis: Definition 5 of Normal Subset
\(\ds \leadsto \ \ \) \(\ds \forall x \in S: \, \) \(\ds \paren {g^{-1} \circ x \circ g} \circ \paren {g^{-1} \circ g}\) \(\in\) \(\ds S\) Group Axiom $\text G 1$: Associativity
\(\ds \leadsto \ \ \) \(\ds \forall x \in S: \, \) \(\ds \paren {g^{-1} \circ x \circ g} \circ e\) \(\in\) \(\ds S\) Definition of Inverse Element
\(\ds \leadsto \ \ \) \(\ds \forall x \in S: \, \) \(\ds g^{-1} \circ x \circ g\) \(\in\) \(\ds S\) Definition of Identity Element
\(\ds \leadsto \ \ \) \(\ds g^{-1} \circ S \circ g\) \(\subseteq\) \(\ds S\) Definition of Subset Product

$\blacksquare$