Exponent Combination Laws/Power of Quotient

From ProofWiki
Jump to: navigation, search

Theorem

Let $a, b \in \R_+$ be positive real numbers.

Let $x \in \R$ be a real number.

Let $a^x$ be defined as $a$ to the power of $x$.


Then:

$\left({\dfrac a b}\right)^x = \dfrac{a^x}{b^x}$


Proof

\(\displaystyle \) \(\displaystyle \) \(\displaystyle \) \(\displaystyle \left({\frac a b}\right)^x\) \(=\) \(\displaystyle \) \(\displaystyle \exp \left({x \ln \left({\frac a b}\right)}\right)\) \(\displaystyle \) \(\displaystyle \)          Definition of Power to Real Number          
\(\displaystyle \) \(\displaystyle \) \(\displaystyle \) \(\displaystyle \) \(=\) \(\displaystyle \) \(\displaystyle \exp \left({x \ln a - x \ln b}\right)\) \(\displaystyle \) \(\displaystyle \)          Sum of Logarithms          
\(\displaystyle \) \(\displaystyle \) \(\displaystyle \) \(\displaystyle \) \(=\) \(\displaystyle \) \(\displaystyle \frac{\exp \left({x \ln a}\right)}{\exp \left({x \ln b}\right)}\) \(\displaystyle \) \(\displaystyle \)          Exponent of Sum          
\(\displaystyle \) \(\displaystyle \) \(\displaystyle \) \(\displaystyle \) \(=\) \(\displaystyle \) \(\displaystyle \frac{a^x}{b^x}\) \(\displaystyle \) \(\displaystyle \)          Definition of Power to Real Number          

$\blacksquare$