Leibniz's Formula for Pi/Lemma

From ProofWiki
Jump to navigation Jump to search

Lemma

\(\ds \frac 1 {1 + t^2}\) \(=\) \(\ds 1 - t^2 + t^4 - t^6 + \cdots + t^{4 n} - \frac {t^{4 n + 2} } {1 + t^2}\)
\(\ds \) \(=\) \(\ds \paren {\sum_{k \mathop = 0}^{2 n} \paren {-1}^k t^{2 k} } - \frac {t^{4 n + 2} } {1 + t^2}\)

This holds for all real $t \in \R$.


Proof

\(\ds \frac {1 - \paren {-t^2}^{2 n + 1} } {1 - \paren {-t^2} }\) \(=\) \(\ds \sum_{k \mathop = 0}^{2 n} \paren {-t^2}^k\) Sum of Geometric Sequence
\(\ds \leadsto \ \ \) \(\ds \frac {1 + \paren {t^2}^{2 n + 1} } {1 + t^2}\) \(=\) \(\ds 1 - t^2 + t^4 - t^6 + \cdots + t^{4 n}\)
\(\ds \leadsto \ \ \) \(\ds \frac 1 {1 + t^2} + \frac {t^{4 n + 2} } {1 + t^2}\) \(=\) \(\ds 1 - t^2 + t^4 - t^6 + \cdots + t^{4 n}\)
\(\ds \leadsto \ \ \) \(\ds \frac 1 {1 + t^2}\) \(=\) \(\ds 1 - t^2 + t^4 - t^6 + \cdots + t^{4 n} - \frac {t^{4 n + 2} } {1 + t^2}\)


From Square of Real Number is Non-Negative, we have that:

$t^2 \ge 0$

for all real $t$.

So $- t^2 \le 0$ and so $- t^2 \ne 1$.

So the conditions of Sum of Geometric Sequence are satisfied, and so the above argument holds for all real $t$.

$\blacksquare$