Limit of Absolute Value

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x, \xi \in \R$ be real numbers.


Then:

$\size {x - \xi} \to 0$ as $x \to \xi$

where $\size {x - \xi}$ denotes the Absolute Value.


Proof

Let $\epsilon > 0$.

Let $\delta = \epsilon$.

From the definition of a limit of a function, we need to show that $\size {\map f x - 0} < \epsilon$ provided that $0 < \size {x - \xi} < \delta$, where $\map f x = \size {x - \xi}$.


Thus, provided $0 < \size {x - \xi} < \delta$, we have:

\(\ds \size {x - \xi} - 0\) \(=\) \(\ds \size {x - \xi}\)
\(\ds \) \(<\) \(\ds \delta\)
\(\ds \) \(=\) \(\ds \epsilon\)

Hence the result.

$\blacksquare$


Sources