Mapping reflects Preordering

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ and $T$ be sets.

Let $f: S \to T$ be a mapping.

Let ${\precsim} \subseteq T \times T$ be a preordering on $T$.


Let $\RR$ be the relation defined on $S$ by the rule:

$x \mathrel \RR y \iff \map f x \precsim \map f y$

Then $\RR$ is a preordering on $S$.


Proof

Reflexivity

\(\ds x\) \(\in\) \(\ds S\)
\(\ds \leadsto \ \ \) \(\ds \map f x\) \(\in\) \(\ds T\) Definition of $f$
\(\ds \leadsto \ \ \) \(\ds \map f x\) \(\precsim\) \(\ds \map f x\) as $\precsim$ is a preordering on $T$
\(\ds \leadsto \ \ \) \(\ds x\) \(\RR\) \(\ds x\) Definition of $\RR$

Thus $\RR$ is reflexive.

$\Box$


Transitivity

\(\ds x\) \(\RR\) \(\ds y\)
\(\, \ds \land \, \) \(\ds y\) \(\RR\) \(\ds z\)
\(\ds \leadsto \ \ \) \(\ds \map f x\) \(\precsim\) \(\ds \map f y\)
\(\, \ds \land \, \) \(\ds \map f y\) \(\precsim\) \(\ds \map f z\) Definition of $\RR$
\(\ds \leadsto \ \ \) \(\ds \map f x\) \(\precsim\) \(\ds \map f z\) as $\precsim$ is a preordering on $T$
\(\ds \leadsto \ \ \) \(\ds x\) \(\RR\) \(\ds z\) Definition of $\RR$

Thus $\RR$ is transitive.

$\Box$


So, by definition, $\RR$ is a preordering.

$\blacksquare$


Sources