Null Space Closed under Scalar Multiplication

From ProofWiki
Jump to navigation Jump to search

Theorem

Let:

$\map {\mathrm N} {\mathbf A} = \set {\mathbf x \in \R^n : \mathbf {A x} = \mathbf 0}$

be the null space of $\mathbf A$, where:

$ \mathbf A_{m \times n} = \begin{bmatrix}

a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end {bmatrix}$, $\mathbf x_{n \times 1} = \begin {bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end {bmatrix}$, $\mathbf 0_{m \times 1} = \begin {bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end {bmatrix}$

are matrices where each column is an element of a real vector space.


Then $\map {\mathrm N} {\mathbf A}$ is closed under scalar multiplication:

$\forall \mathbf v \in \map {\mathrm N} {\mathbf A} ,\forall \lambda \in \R: \lambda \mathbf v \in \map {\mathrm N} {\mathbf A}$


Proof

Let $\mathbf v \in \map {\mathrm N} {\mathbf A}$, $\lambda \in \R$.

By the definition of null space:

\(\ds \mathbf {A v}\) \(=\) \(\ds \mathbf {0}\)

Observe that:

\(\ds \mathbf A \paren {\lambda \mathbf v}\) \(=\) \(\ds \lambda \paren {\mathbf {A v} }\) Matrix Multiplication is Homogeneous of Degree $1$
\(\ds \) \(=\) \(\ds \lambda \mathbf 0\)
\(\ds \) \(=\) \(\ds \mathbf 0\)

Hence the result, by the definition of null space.

$\blacksquare$


Also see


Sources