Periodicity of Complex Exponential Function

From ProofWiki
Jump to navigation Jump to search



Theorem

For all $k \in \Z$:

$e^{i \paren {\theta + 2 k \pi} } = e^{i \theta}$


Proof

\(\ds e^{i \paren {\theta + 2 k \pi} }\) \(=\) \(\ds \map \cos {\theta + 2 k \pi} + i \, \map \sin {\theta + 2 k \pi}\) Euler's Formula
\(\ds \) \(=\) \(\ds \cos \theta + i \sin \theta\) Sine and Cosine are Periodic on Reals
\(\ds \) \(=\) \(\ds e^{i \theta}\) Euler's Formula

$\blacksquare$


Sources