Set Difference is Right Distributive over Set Intersection

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A, B, C$ be sets.

Then:

$\paren {A \cap B} \setminus C = \paren {A \setminus C} \cap \paren {B \setminus C}$

where:

$A \cap B$ denotes set intersection
$A \setminus C$ denotes set difference.


That is, set difference is right distributive over set intersection.


Illustration by Venn Diagram

Set-diff-right-dist-intersection-1.png Set-diff-right-dist-intersection-2.png


General Case

Let $U$ be a collection of sets.

Let $T$ be a set.


Then:

$\ds \bigcap_{X \mathop \in U} \paren {X \setminus T} = \paren {\bigcap_{X \mathop \in U} X} \setminus T$

That is, the difference with an intersection equals the intersection of the differences.


Proof 1

Consider $A, B, C \subseteq \mathbb U$, where $\mathbb U$ is considered as the universe.


\(\ds \paren {A \cap B} \setminus C\) \(=\) \(\ds \paren {A \cap B} \cap \map \complement C\) Set Difference as Intersection with Complement
\(\ds \) \(=\) \(\ds \paren {A \cap B} \cap \paren {\map \complement C \cap \map \complement C}\) Set Intersection is Idempotent
\(\ds \) \(=\) \(\ds \paren {A \cap \map \complement C} \cap \paren {B \cap \map \complement C}\) Intersection is Associative and Intersection is Commutative
\(\ds \) \(=\) \(\ds \paren {A \setminus C} \cap \paren {B \setminus C}\) Set Difference as Intersection with Complement

$\blacksquare$


Proof 2

\(\ds x\) \(\in\) \(\ds \paren {A \cap B} \setminus C\)
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(\in\) \(\ds A \land x \in B\) Definition of Set Intersection
\(\, \ds \land \, \) \(\ds x\) \(\notin\) \(\ds C\) Definition of Set Difference
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(\in\) \(\ds A \land x \in B\) Rule of Idempotence
\(\, \ds \land \, \) \(\ds x\) \(\notin\) \(\ds C \land x \notin C\) Rule of Idempotence
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(\in\) \(\ds A\) Rule of Association
\(\, \ds \land \, \) \(\ds x\) \(\in\) \(\ds x \in B \land x \notin C\)
\(\, \ds \land \, \) \(\ds x\) \(\notin\) \(\ds C\)
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(\in\) \(\ds A\)
\(\, \ds \land \, \) \(\ds x\) \(\notin\) \(\ds C \land x \in B\) Rule of Commutation
\(\, \ds \land \, \) \(\ds x\) \(\notin\) \(\ds C\)
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(\in\) \(\ds A \land x \notin C\) Rule of Association
\(\, \ds \land \, \) \(\ds x\) \(\in\) \(\ds B \land x \notin C\)
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(\in\) \(\ds \paren {A \setminus C}\) Definition of Set Difference
\(\, \ds \land \, \) \(\ds x\) \(\in\) \(\ds \paren {B \setminus C}\) Definition of Set Difference
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(\in\) \(\ds \paren {A \setminus C} \cap \paren {B \setminus C}\) Definition of Set Intersection

$\blacksquare$


Sources