Subgroup Subset of Subgroup Product

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ}$ be a group whose identity is $e$.

Let $H$ and $K$ be subgroups of $G$.


Then:

$H \subseteq H \circ K \supseteq K$

where $H \circ K$ denotes the subset product of $H$ and $K$.


Proof

By definition of subset product:

$H \circ K = \set {h \circ k: h \in H, k \in K}$


So:

\(\ds x\) \(\in\) \(\ds H\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds x \circ e\) Definition of Identity Element
\(\ds \) \(\in\) \(\ds H \circ K\) Identity of Subgroup
\(\ds \leadsto \ \ \) \(\ds H\) \(\subseteq\) \(\ds H \circ K\) Definition of Subset


and:

\(\ds y\) \(\in\) \(\ds K\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds e \circ y\) Definition of Identity Element
\(\ds \) \(\in\) \(\ds H \circ K\) Identity of Subgroup
\(\ds \leadsto \ \ \) \(\ds K\) \(\subseteq\) \(\ds H \circ K\) Definition of Subset

$\blacksquare$