Symbols:A

From ProofWiki
Jump to navigation Jump to search

Previous  ... Next

atto-

$\mathrm a$

The Système Internationale d'Unités symbol for the metric scaling prefix atto, denoting $10^{\, -18 }$, is $\mathrm { a }$.


Its $\LaTeX$ code is \mathrm {a} .


are

$\mathrm a$

One are is equal to a square whose side measures $10$ metres.

\(\ds \) \(\) \(\ds 1\) are
\(\ds \) \(=\) \(\ds 100\) square metres
\(\ds \) \(=\) \(\ds 0 \cdotp 01\) hectares
\(\ds \) \(\approx\) \(\ds 119 \cdot 60\) square yards


The symbol for the are is $\mathrm a$.


The $\LaTeX$ code for \(\mathrm a\) is \mathrm a .


Hexadecimal

$\mathrm A$ or $\mathrm a$

The hexadecimal digit $10$.


Its $\LaTeX$ code is \mathrm A  or \mathrm a.


Acceleration

$\mathbf a$

The acceleration $\mathbf a$ of a body $M$ is defined as the first derivative of the velocity $\mathbf v$ of $M$ relative to a given point of reference with respect to time $t$:

$\mathbf a = \dfrac {\d \mathbf v} {\d t}$


The usual symbol used to denote the acceleration of a body is $\mathbf a$.


The $\LaTeX$ code for \(\mathbf a\) is \mathbf a .


Celestial Altitude

$a$


Let $X$ be a point on the celestial sphere.

The (celestial) altitude of $X$ is defined as the angle subtended by the the arc of the vertical circle through $X$ between the celestial horizon and $X$ itself.


The $\LaTeX$ code for \(a\) is a .


Azimuth (Astronomy)

$A$


Let $X$ be a point on the celestial sphere.

The spherical angle between the principal vertical circle and the vertical circle on which $X$ lies is the azimuth of $X$.

The azimuth is usually measured in degrees, $0 \degrees$ to $180 \degrees$ either west or east, depending on whether $X$ lies on the eastern or western hemisphere of the celestial sphere.


The symbol for azimuth (in the context of astronomy) is $A$.


The $\LaTeX$ code for \(A\) is A .


Ampere

$\mathrm A$


The ampere is the SI base unit of electric current.


It is defined as being:

The constant current which will produce a force of attraction whose value is $2 \times 10^{–7}$ newtons per metre of length between two straight, parallel conductors of infinite length and of infinitesimal circular cross-section placed one metre apart in a vacuum.


The symbol for the ampere is $\mathrm A$.


Its $\LaTeX$ code is \mathrm A .


Angstrom

$\mathring {\mathrm A}$


The angstrom is a metric unit of length.


\(\ds \) \(\) \(\ds 1\) angstrom
\(\ds \) \(=\) \(\ds 10^{-1}\) nanometres
\(\ds \) \(=\) \(\ds 10^{-4}\) micrometres
\(\ds \) \(=\) \(\ds 10^{-7}\) millimetres
\(\ds \) \(=\) \(\ds 10^{-8}\) centimetres
\(\ds \) \(=\) \(\ds 10^{-10}\) metres


The symbol for the angstrom is $\mathring {\mathrm A}$.


The $\LaTeX$ code for \(\mathring {\mathrm A}\) is \mathring {\mathrm A} .


Alternating Group

$A_n$


Let $S_n$ denote the symmetric group on $n$ letters.

For any $\pi \in S_n$, let $\map \sgn \pi$ be the sign of $\pi$.


The kernel of the mapping $\sgn: S_n \to C_2$ is called the alternating group on $n$ letters and denoted $A_n$.


The $\LaTeX$ code for \(A_n\) is A_n .


Airy Function of the First Kind

$\map \Ai x$

An Airy function of the first kind is an Airy function which is of the form:

$\ds \map {\Ai} x = \dfrac 1 \pi \int_0^\infty \map \cos {\dfrac {t^3} 3 + x t} \rd t$


The $\LaTeX$ code for \(\map \Ai x\) is \map \Ai x .


Automorphism Group

$\Aut S$

Let $\struct {S, *}$ be an algebraic structure.

Let $\mathbb S$ be the set of automorphisms of $S$.

Then the algebraic structure $\struct {\mathbb S, \circ}$, where $\circ$ denotes composition of mappings, is called the automorphism group of $S$.


The structure $\struct {S, *}$ is usually a group. However, this is not necessary for this definition to be valid.


The automorphism group of an algebraic structure $S$ is denoted on $\mathsf{Pr} \infty \mathsf{fWiki}$ as $\Aut S$.


The $\LaTeX$ code for \(\Aut S\) is \Aut S .


arc-

Symbols:A/arc-

Arccosine

Real Arccosine Function

From Shape of Cosine Function, we have that $\cos x$ is continuous and strictly decreasing on the interval $\closedint 0 \pi$.

From Cosine of Multiple of Pi, $\cos \pi = -1$ and $\cos 0 = 1$.


Therefore, let $g: \closedint 0 \pi \to \closedint {-1} 1$ be the restriction of $\cos x$ to $\closedint 0 \pi$.

Thus from Inverse of Strictly Monotone Function, $\map g x$ admits an inverse function, which will be continuous and strictly decreasing on $\closedint {-1} 1$.


Thus:

The domain of arccosine is $\closedint {-1} 1$
The image of arccosine is $\closedint 0 \pi$.


arccos

$\arccos$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arccosine function is $\arccos$.


The $\LaTeX$ code for \(\arccos\) is \arccos .


acos

$\operatorname {acos}$

A variant symbol used to denote the arccosine function is $\operatorname {acos}$.


The $\LaTeX$ code for \(\operatorname {acos}\) is \operatorname {acos} .


Arccosecant

Arccosecant Function

From Shape of Cosecant Function, we have that $\csc x$ is continuous and strictly decreasing on the intervals $\hointr {-\dfrac \pi 2} 0$ and $\hointl 0 {\dfrac \pi 2}$.

From the same source, we also have that:

$\csc x \to + \infty$ as $x \to 0^+$
$\csc x \to - \infty$ as $x \to 0^-$


Let $g: \hointr {-\dfrac \pi 2} 0 \to \hointl {-\infty} {-1}$ be the restriction of $\csc x$ to $\hointr {-\dfrac \pi 2} 0$.

Let $h: \hointl 0 {\dfrac \pi 2} \to \hointr 1 \infty$ be the restriction of $\csc x$ to $\hointl 0 {\dfrac \pi 2}$.

Let $f: \closedint {-\dfrac \pi 2} {\dfrac \pi 2} \setminus \set 0 \to \R \setminus \openint {-1} 1$:

$\map f x = \begin{cases}

\map g x & : -\dfrac \pi 2 \le x < 0 \\ \map h x & : 0 < x \le \dfrac \pi 2 \end{cases}$


From Inverse of Strictly Monotone Function, $\map g x$ admits an inverse function, which will be continuous and strictly decreasing on $\hointl {-\infty} {-1}$.

From Inverse of Strictly Monotone Function, $\map h x$ admits an inverse function, which will be continuous and strictly decreasing on $\hointr 1 \infty$.

As both the domain and range of $g$ and $h$ are disjoint, it follows that:

$\map {f^{-1} } x = \begin {cases}

\map {g^{-1} } x & : x \le -1 \\ \map {h^{-1} } x & : x \ge 1 \end {cases}$


This function $\map {f^{-1} } x$ is called arccosecant of $x$.

Thus:

The domain of the arccosecant is $\R \setminus \openint {-1} 1$
The image of the arccosecant is $\closedint {-\dfrac \pi 2} {\dfrac \pi 2} \setminus \set 0$.


arccsc

$\arccsc$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arccosecant function is $\arccsc$.


The $\LaTeX$ code for \(\arccsc\) is \arccsc .


arccosec

$\operatorname {arccosec}$

A variant symbol used to denote the arccosecant function is $\operatorname {arccosec}$.


The $\LaTeX$ code for \(\operatorname {arccosec}\) is \operatorname {arccosec} .


acosec

$\operatorname {acosec}$

A variant symbol used to denote the arccosecant function is $\operatorname {acosec}$.


The $\LaTeX$ code for \(\operatorname {acosec}\) is \operatorname {acosec} .


acsc

$\operatorname {acsc}$

A variant symbol used to denote the arccosecant function is $\operatorname {acsc}$.


The $\LaTeX$ code for \(\operatorname {acsc}\) is \operatorname {acsc} .


Arccotangent

Arccotangent Function

From Shape of Cotangent Function, we have that $\cot x$ is continuous and strictly decreasing on the interval $\openint 0 \pi$.

From the same source, we also have that:

$\cot x \to + \infty$ as $x \to 0^+$
$\cot x \to - \infty$ as $x \to \pi^-$


Let $g: \openint 0 \pi \to \R$ be the restriction of $\cot x$ to $\openint 0 \pi$.

Thus from Inverse of Strictly Monotone Function, $\map g x$ admits an inverse function, which will be continuous and strictly decreasing on $\R$.


This function is called arccotangent of $x$ and is written $\arccot x$.

Thus:

The domain of the arccotangent is $\R$
The image of the arccotangent is $\openint 0 \pi$.


arccot

$\arccot$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arccotangent function is $\arccot$.


The $\LaTeX$ code for \(\arccot\) is \arccot .


acot

$\operatorname {acot}$

A variant symbol used to denote the arccotangent function is $\operatorname {acot}$.


Its $\LaTeX$ code is \operatorname {acot} .


actn

$\operatorname {actn}$

A variant symbol used to denote the arccotangent function is $\operatorname {actn}$.


Its $\LaTeX$ code is \operatorname {actn} .


Area Hyperbolic Cosine

The principal branch of the real inverse hyperbolic cosine function is defined as:

$\forall x \in S: \map \arcosh x := \map \ln {x + \sqrt {x^2 - 1} }$

where:

$\ln$ denotes the natural logarithm of a (strictly positive) real number.
$\sqrt {x^2 - 1}$ specifically denotes the positive square root of $x^2 - 1$

That is, where $\map \arcosh x \ge 0$.


arcosh

$\arcosh$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic cosine function is $\arcosh$.


The $\LaTeX$ code for \(\arcosh\) is \arcosh .


acosh

$\operatorname {acosh}$

A variant symbol used to denote the area hyperbolic cosine function is $\operatorname {acosh}$.


Its $\LaTeX$ code is \operatorname {acosh} .


Area Hyperbolic Cosecant

The inverse hyperbolic cosecant $\arcsch: \R_{\ne 0} \to \R$ is a real function defined on the non-zero real numbers $\R_{\ne 0}$ as:

$\forall x \in \R_{\ne 0}: \map \arcsch x := \map \ln {\dfrac 1 x + \dfrac {\sqrt {x^2 + 1} } {\size x} }$

where:

$\sqrt {x^2 + 1}$ denotes the positive square root of $x^2 + 1$
$\ln$ denotes the natural logarithm of a (strictly positive) real number.


arcsch

$\arcsch$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic cosecant function is $\arcsch$.


The $\LaTeX$ code for \(\arcsch\) is \arcsch .


acsch

$\operatorname {acsch}$

A variant symbol used to denote the area hyperbolic cosecant function is $\operatorname {acsch}$.


The $\LaTeX$ code for \(\operatorname {acsch}\) is \operatorname {acsch} .


acosech

$\operatorname {acosech}$

A variant symbol used to denote the area hyperbolic cosecant function is $\operatorname {acosech}$.


The $\LaTeX$ code for \(\operatorname {acosech}\) is \operatorname {acosech} .


Area Hyperbolic Cotangent

The inverse hyperbolic cotangent $\arcoth: S \to \R$ is a real function defined on $S$ as:

$\forall x \in S: \arcoth x := \dfrac 1 2 \map \ln {\dfrac {x + 1} {x - 1} }$

where $\ln$ denotes the natural logarithm of a (strictly positive) real number.


arcoth

$\arcoth$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic cotangent function is $\arcoth$.


The $\LaTeX$ code for \(\arcoth\) is \arcoth .


acoth

$\operatorname {acoth}$

A variant symbol used to denote the area hyperbolic cotangent function is $\operatorname {acoth}$.


The $\LaTeX$ code for \(\operatorname {acoth}\) is \operatorname {acoth} .


actnh

$\operatorname {actnh}$

A variant symbol used to denote the area hyperbolic cotangent function is $\operatorname {actnh}$.


The $\LaTeX$ code for \(\operatorname {actnh}\) is \operatorname {actnh} .


adj

$\adj {\mathbf A}$


Let $\mathbf A = \sqbrk a_n$ be a square matrix of order $n$.

Let $\mathbf C$ be its cofactor matrix.


The adjugate matrix of $\mathbf A$ is the transpose of $\mathbf C$:

$\adj {\mathbf A} = \mathbf C^\intercal$


The $\LaTeX$ code for \(\adj {\mathbf A}\) is \adj {\mathbf A} .


aln

$\operatorname {aln}$

The antilogarithm of the natural logarithm.


Its $\LaTeX$ code is \operatorname {aln} .


alog

$\operatorname {alog}_b$


Let $x \in \R_{>0}$ be a strictly positive real number.

Let $b \in \R_{>1}$ be a real number which is greater than $1$.

Let $y = \log_b x$ be the logarithm of $x$ base $b$.


Then $x$ is the antilogarithm of $y$ base $b$.


The $\LaTeX$ code for \(\operatorname {alog}_b\) is \operatorname {alog}_b .


Amplitude of Incomplete Elliptic Integral of the First Kind

The parameter $\phi$ of $u = \map F {k, \phi}$ is called the amplitude of $u$.


am

$\am$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the amplitude of the incomplete elliptic integral of the first kind is $\am$.


The $\LaTeX$ code for \(\am\) is \am .


amp

$\operatorname {amp} $

A variant symbol used to denote the amplitude of the incomplete elliptic integral of the first kind is $\operatorname {amp}$.


The $\LaTeX$ code for \(\operatorname {amp}\) is \operatorname {amp} .


Ann

$\operatorname {Ann}$


Let $B: R \times \Z$ be a bilinear mapping defined as:

$B: R \times \Z: \tuple {r, n} \mapsto n \cdot r$

where $n \cdot r$ defined as an integral multiple of $r$:

$n \cdot r = r + r + \cdots \paren n \cdots r$

Note the change of order of $r$ and $n$:

$\map B {r, n} = n \cdot r$


Let $D \subseteq R$ be a subring of $R$.

Then the annihilator of $D$ is defined as:

$\map {\mathrm {Ann} } D = \set {n \in \Z: \forall d \in D: n \cdot d = 0_R}$

or, when $D = R$:

$\map {\mathrm {Ann} } R = \set {n \in \Z: \forall r \in R: n \cdot r = 0_R}$


Its $\LaTeX$ code is \operatorname {Ann} .


arg

$\arg$

The argument of a complex number.


Its $\LaTeX$ code is \arg .


Arg

$\operatorname {Arg}$

The principal argument of a complex number.


Its $\LaTeX$ code is \Arg .


Arcsine

Arcsine Function

From Shape of Sine Function, we have that $\sin x$ is continuous and strictly increasing on the interval $\closedint {-\dfrac \pi 2} {\dfrac \pi 2}$.

From Sine of Half-Integer Multiple of Pi:

$\map \sin {-\dfrac {\pi} 2} = -1$

and:

$\sin \dfrac {\pi} 2 = 1$


Therefore, let $g: \closedint {-\dfrac \pi 2} {\dfrac \pi 2} \to \closedint {-1} 1$ be the restriction of $\sin x$ to $\closedint {-\dfrac \pi 2} {\dfrac \pi 2}$.

Thus from Inverse of Strictly Monotone Function, $g \paren x$ admits an inverse function, which will be continuous and strictly increasing on $\closedint {-1} 1$.


This function is called arcsine of $x$.


Thus:

The domain of arcsine is $\closedint {-1} 1$
The image of arcsine is $\closedint {-\dfrac \pi 2} {\dfrac \pi 2}$.


arcsin

$\arcsin$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arcsine function is $\arcsin$.


The $\LaTeX$ code for \(\arcsin\) is \arcsin .


asin

$\operatorname {asin}$

A variant symbol used to denote the arcsine function is $\operatorname {asin}$.


The $\LaTeX$ code for \(\operatorname {asin}\) is \operatorname {asin} .


Arcsecant

Arcsecant Function

From Shape of Secant Function, we have that $\sec x$ is continuous and strictly increasing on the intervals $\hointr 0 {\dfrac \pi 2}$ and $\hointl {\dfrac \pi 2} \pi$.

From the same source, we also have that:

$\sec x \to + \infty$ as $x \to \dfrac \pi 2^-$
$\sec x \to - \infty$ as $x \to \dfrac \pi 2^+$


Let $g: \hointr 0 {\dfrac \pi 2} \to \hointr 1 \to$ be the restriction of $\sec x$ to $\hointr 0 {\dfrac \pi 2}$.

Let $h: \hointl {\dfrac \pi 2} \pi \to \hointl \gets {-1}$ be the restriction of $\sec x$ to $\hointl {\dfrac \pi 2} \pi$.

Let $f: \closedint 0 \pi \setminus \dfrac \pi 2 \to \R \setminus \openint {-1} 1$:

$\map f x = \begin{cases}

\map g x & : 0 \le x < \dfrac \pi 2 \\ \map h x & : \dfrac \pi 2 < x \le \pi \end{cases}$


From Inverse of Strictly Monotone Function, $\map g x$ admits an inverse function, which will be continuous and strictly increasing on $\hointr 1 \to$.

From Inverse of Strictly Monotone Function, $\map h x$ admits an inverse function, which will be continuous and strictly increasing on $\hointl \gets {-1}$.

As both the domain and range of $g$ and $h$ are disjoint, it follows that:

$\map {f^{-1} } x = \begin{cases}

\map {g^{-1} } x & : x \ge 1 \\ \map {h^{-1} } x & : x \le -1 \end{cases}$


This function $\map {f^{-1} } x$ is called arcsecant of $x$.

Thus:

The domain of arcsecant is $\R \setminus \openint {-1} 1$
The image of arcsecant is $\closedint 0 \pi \setminus \dfrac \pi 2$.


arcsec

$\arcsec$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arcsecant function is $\arcsec$.


The $\LaTeX$ code for \(\arcsec\) is \arcsec .


asec

$\operatorname {asec}$

A variant symbol used to denote the arcsecant function is $\operatorname {asec}$.


The $\LaTeX$ code for \(\operatorname {asec}\) is \operatorname {asec} .


Arctangent

Arctangent Function

From Shape of Tangent Function, we have that $\tan x$ is continuous and strictly increasing on the interval $\openint {-\dfrac \pi 2} {\dfrac \pi 2}$.

From the same source, we also have that:

$\tan x \to + \infty$ as $x \to \dfrac \pi 2 ^-$
$\tan x \to - \infty$ as $x \to -\dfrac \pi 2 ^+$


Let $g: \openint {-\dfrac \pi 2} {\dfrac \pi 2} \to \R$ be the restriction of $\tan x$ to $\openint {-\dfrac \pi 2} {\dfrac \pi 2}$.

Thus from Inverse of Strictly Monotone Function, $\map g x$ admits an inverse function, which will be continuous and strictly increasing on $\R$.


This function is called arctangent of $x$ and is written $\arctan x$.

Thus:

The domain of arctangent is $\R$
The image of arctangent is $\openint {-\dfrac \pi 2} {\dfrac \pi 2}$.


arctan

$\arctan$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arctangent function is $\arctan$.


The $\LaTeX$ code for \(\arctan\) is \arctan .


atan

$\operatorname {atan}$

A variant symbol used to denote the arctangent function is $\operatorname {atan}$.


The $\LaTeX$ code for \(\operatorname {atan}\) is \operatorname {atan} .


atn

$\operatorname {atn}$

A variant symbol used to denote the arctangent function is $\operatorname {atn}$.


The $\LaTeX$ code for \(\operatorname {atn}\) is \operatorname {atn} .


Area Hyperbolic Sine

The inverse hyperbolic sine $\arsinh: \R \to \R$ is a real function defined on $\R$ as:

$\forall x \in \R: \map \arsinh x := \map \ln {x + \sqrt {x^2 + 1} }$

where:

$\ln$ denotes the natural logarithm of a (strictly positive) real number
$\sqrt {x^2 + 1}$ denotes the positive square root of $x^2 + 1$.


arsinh

$\arsinh$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic sine function is $\arsinh$.


The $\LaTeX$ code for \(\arsinh\) is \arsinh .


asinh

$\operatorname {asinh}$

A variant symbol used to denote the area hyperbolic sine function is $\operatorname {asinh}$.


The $\LaTeX$ code for \(\operatorname {asinh}\) is \operatorname {asinh} .


Area Hyperbolic Secant

The principal branch of the real inverse hyperbolic secant function is defined as:

$\forall x \in S: \map \arsech x := \map \ln {\dfrac {1 + \sqrt {1 - x^2} } x}$

where:

$\ln$ denotes the natural logarithm of a (strictly positive) real number.
$\sqrt {1 - x^2}$ specifically denotes the positive square root of $x^2 - 1$

That is, where $\map \arsech x \ge 0$.


arsech

$\arsech$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic secant function is $\arsech$.


The $\LaTeX$ code for \(\arsech\) is \arsech .


asech

$\operatorname {asech}$

A variant symbol used to denote the area hyperbolic secant function is $\operatorname {asech}$.


The $\LaTeX$ code for \(\operatorname {asech}\) is \operatorname {asech} .


Area Hyperbolic Tangent

The inverse hyperbolic tangent $\artanh: S \to \R$ is a real function defined on $S$ as:

$\forall x \in S: \map \artanh x := \dfrac 1 2 \map \ln {\dfrac {1 + x} {1 - x} }$

where $\ln$ denotes the natural logarithm of a (strictly positive) real number.


artanh

$\artanh$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic tangent function is $\artanh$.


The $\LaTeX$ code for \(\artanh\) is \artanh .


atanh

$\operatorname {atanh}$

A variant symbol used to denote the area hyperbolic tangent function is $\operatorname {atanh}$.


The $\LaTeX$ code for \(\operatorname {atanh}\) is \operatorname {atanh} .


Standard Atmosphere

The standard atmosphere is a unit of pressure.


It is defined as being:

The amount of pressure equal to exactly $101 \, 325$ pascals.
\(\ds \) \(\) \(\ds 1\) standard atmosphere
\(\ds \) \(=\) \(\ds 101 \, 325\) pascals
\(\ds \) \(\approx\) \(\ds 760\) millimetres of mercury
\(\ds \) \(\approx\) \(\ds 14.70\) pounds per square inch


atm

$\mathrm {atm}$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the standard atmosphere is $\mathrm {atm}$.


The $\LaTeX$ code for \(\mathrm {atm}\) is \mathrm {atm} .


Int atm

$\mathrm {Int \, atm}$

A variant symbol used to denote the standard atmosphere is $\mathrm {Int \, atm}$.

This reflects its variant name of international atmosphere.


The $\LaTeX$ code for \(\mathrm {Int \, atm}\) is \mathrm {Int \, atm} .


Abampere

$\mathrm {abA}$

The symbol for the abampere is $\mathrm {abA}$.


Its $\LaTeX$ code is \mathrm {abA} .


Abcoulomb

$\mathrm {abC}$

The symbol for the abcoulomb is $\mathrm {abC}$.


Its $\LaTeX$ code is \mathrm {abC} .


Abvolt

$\mathrm {abV}$

The symbol for the abvolt is $\mathrm {abV}$.


Its $\LaTeX$ code is \mathrm {abV} .


Abohm

$\mathrm {ab \Omega}$

The symbol for the abohm is $\mathrm {ab \Omega}$, where $\Omega$ is the Greek letter Omega.


Its $\LaTeX$ code is \mathrm {ab \Omega} .


Abhenry

$\mathrm {abH}$

The symbol for the abhenry is $\mathrm {abH}$.


Its $\LaTeX$ code is \mathrm {abH} .


Abfarad

$\mathrm {abF}$

The symbol for the abfarad is $\mathrm {abF}$.


Its $\LaTeX$ code is \mathrm {abF} .


Atomic Mass Unit

$\mathrm {amu}$ or $\mathrm {AMU}$

The symbol for the atomic mass unit is $\mathrm {amu}$ or $\mathrm {AMU}$.


The $\LaTeX$ code for \(\mathrm {amu}\) is \mathrm {amu} .

The $\LaTeX$ code for \(\mathrm {AMU}\) is \mathrm {AMU} .


Bohr Radius

$a_0$

The symbol for the Bohr radius is $a_0$.


The $\LaTeX$ code for \(a_0\) is a_0 .


Astronomical Unit

$\mathrm {AU}$ or $\mathrm {au}$

The symbol for the astronomical unit is $\mathrm {AU}$ or $\mathrm {au}$.


The $\LaTeX$ code for \(\mathrm {AU}\) is \mathrm {AU} .

The $\LaTeX$ code for \(\mathrm {au}\) is \mathrm {au} .


Previous  ... Next