Symmetric Difference of Unions

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $R$, $S$ and $T$ be sets.

Then:

$\paren {R \cup T} \symdif \paren {S \cup T} = \paren {R \symdif S} \setminus T$

where:

$\symdif$ denotes the symmetric difference
$\setminus$ denotes set difference
$\cup$ denotes set union


Proof

\(\ds \paren {R \cup T} \symdif \paren {S \cup T}\) \(=\) \(\ds \paren {\paren {R \cup T} \setminus \paren {S \cup T} } \cup \paren {\paren {S \cup T} \setminus \paren {R \cup T} }\) Definition 1 of Symmetric Difference
\(\ds \) \(=\) \(\ds \paren {\paren {R \setminus S} \setminus T} \cup \paren {\paren {S \setminus R} \setminus T}\) Set Difference with Union
\(\ds \) \(=\) \(\ds \paren {\paren {R \setminus S} \cup \paren {S \setminus R} } \setminus T\) Set Difference is Right Distributive over Union
\(\ds \) \(=\) \(\ds \paren {R \symdif S} \setminus T\) Definition 1 of Symmetric Difference

$\blacksquare$