216
Jump to navigation
Jump to search
Number
$216$ (two hundred and sixteen) is:
- $2^3 \times 3^3$
- The $1$st element of the $2$nd set of $4$ positive integers which form an arithmetic sequence which all have the same Euler $\phi$ value:
- $\map \phi {216} = \map \phi {222} = \map \phi {228} = \map \phi {234} = 72$
- The $3$rd power of $6$ after $(1)$, $6$, $36$:
- $216 = 6^3$
- The $6$th cube number after $1$, $8$, $27$, $64$, $125$:
- $216 = 6 \times 6 \times 6$
- The $7$th positive integer after $64$, $96$, $128$, $144$, $160$, $192$ with $6$ or more prime factors:
- $216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$
- The $10$th inconsummate number after $62$, $63$, $65$, $75$, $84$, $95$, $161$, $173$, $195$:
- $\nexists n \in \Z_{>0}: n = 216 \times \map {s_{10} } n$
- The $12$th of the $17$ positive integers for which the value of the Euler $\phi$ function is $72$:
- $73$, $91$, $95$, $111$, $117$, $135$, $146$, $148$, $152$, $182$, $190$, $216$, $222$, $228$, $234$, $252$, $270$
- The $13$th untouchable number after $2$, $5$, $52$, $88$, $96$, $120$, $124$, $146$, $162$, $188$, $206$, $210$
- The $24$th Zuckerman number after $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, $11$, $12$, $15$, $24$, $36$, $111$, $112$, $115$, $128$, $132$, $135$, $144$, $175$, $212$:
- $216 = 18 \times 12 = 18 \times \paren {2 \times 1 \times 6}$
- The $24$th powerful number after $1$, $4$, $8$, $9$, $16$, $25$, $\ldots$, $108$, $121$, $125$, $128$, $144$, $169$, $196$, $200$
- The $28$th highly abundant number after $1$, $2$, $3$, $4$, $6$, $8$, $10$, $12$, $16$, $18$, $20$, $24$, $30$, $36$, $42$, $48$, $60$, $72$, $84$, $90$, $96$, $108$, $120$, $144$, $168$, $180$, $210$:
- $\map {\sigma_1} {216} = 600$
- The $42$nd positive integer $n$ such that no factorial of an integer can end with $n$ zeroes.
Also see
- Previous ... Next: Sequence of Powers of 6
- Previous ... Next: 4 Positive Integers in Arithmetic Sequence which have Same Euler Phi Value
- Previous ... Next: Cube Number
- Previous ... Next: Numbers with Euler Phi Value of 72
- Previous ... Next: Numbers with 6 or more Prime Factors
- Previous ... Next: Inconsummate Number
- Previous ... Next: Powerful Number
- Previous ... Next: Numbers of Zeroes that Factorial does not end with
- Previous ... Next: Untouchable Number
- Previous ... Next: Highly Abundant Number
- Previous ... Next: Zuckerman Number
Historical Note
$216$ is one of the two numbers generally believed to be Plato's geometrical number:
Sources
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): Glossary
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $216$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): Glossary
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $216$