4-Digit Numbers forming Longest Reverse-and-Add Sequence

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $m \in \Z_{>0}$ be a positive integer expressed in decimal notation.

Let $r \left({m}\right)$ be the reverse-and-add process on $m$.

Let $r$ be applied iteratively to $m$.


The $4$-digit integers $m$ which need the largest number of iterations before reaching a palindromic number are:

$6999, 7998, 8997, 9996$

all of which need $20$ iterations.


Proof

\(\text {(1)}: \quad\) \(\ds \) \(\) \(\, \ds 6999 + 9996 \, \) \(\, \ds = \, \) \(\ds 16995\)
\(\text {(2)}: \quad\) \(\ds \) \(\) \(\, \ds 16995 + 59961 \, \) \(\, \ds = \, \) \(\ds 76956\)
\(\text {(3)}: \quad\) \(\ds \) \(\) \(\, \ds 76956 + 65967 \, \) \(\, \ds = \, \) \(\ds 142923\)
\(\text {(4)}: \quad\) \(\ds \) \(\) \(\, \ds 142923 + 329241 \, \) \(\, \ds = \, \) \(\ds 472164\)
\(\text {(5)}: \quad\) \(\ds \) \(\) \(\, \ds 472164 + 461274 \, \) \(\, \ds = \, \) \(\ds 933438\)
\(\text {(6)}: \quad\) \(\ds \) \(\) \(\, \ds 933438 + 834339 \, \) \(\, \ds = \, \) \(\ds 1767777\)
\(\text {(7)}: \quad\) \(\ds \) \(\) \(\, \ds 1767777 + 7777671 \, \) \(\, \ds = \, \) \(\ds 9545448\)
\(\text {(8)}: \quad\) \(\ds \) \(\) \(\, \ds 9545448 + 8445459 \, \) \(\, \ds = \, \) \(\ds 17990907\)
\(\text {(9)}: \quad\) \(\ds \) \(\) \(\, \ds 17990907 + 70909971 \, \) \(\, \ds = \, \) \(\ds 88900878\)
\(\text {(10)}: \quad\) \(\ds \) \(\) \(\, \ds 88900878 + 87800988 \, \) \(\, \ds = \, \) \(\ds 176701866\)
\(\text {(11)}: \quad\) \(\ds \) \(\) \(\, \ds 176701866 + 668107671 \, \) \(\, \ds = \, \) \(\ds 844809537\)
\(\text {(12)}: \quad\) \(\ds \) \(\) \(\, \ds 844809537 + 735908448 \, \) \(\, \ds = \, \) \(\ds 1580717985\)
\(\text {(13)}: \quad\) \(\ds \) \(\) \(\, \ds 1580717985 + 5897170851 \, \) \(\, \ds = \, \) \(\ds 7477888836\)
\(\text {(14)}: \quad\) \(\ds \) \(\) \(\, \ds 7477888836 + 6388887747 \, \) \(\, \ds = \, \) \(\ds 13866776583\)
\(\text {(15)}: \quad\) \(\ds \) \(\) \(\, \ds 13866776583 + 38567766831 \, \) \(\, \ds = \, \) \(\ds 52434543414\)
\(\text {(16)}: \quad\) \(\ds \) \(\) \(\, \ds 52434543414 + 41434543425 \, \) \(\, \ds = \, \) \(\ds 93869086839\)
\(\text {(17)}: \quad\) \(\ds \) \(\) \(\, \ds 93869086839 + 93868096839 \, \) \(\, \ds = \, \) \(\ds 187737183678\)
\(\text {(18)}: \quad\) \(\ds \) \(\) \(\, \ds 187737183678 + 876381737781 \, \) \(\, \ds = \, \) \(\ds 1064118921459\)
\(\text {(19)}: \quad\) \(\ds \) \(\) \(\, \ds 1064118921459 + 9541298114601 \, \) \(\, \ds = \, \) \(\ds 10605417036060\)
\(\text {(20)}: \quad\) \(\ds \) \(\) \(\, \ds 10605417036060 + 06063071450601 \, \) \(\, \ds = \, \) \(\ds 16668488486661\)

which is palindromic.


$7998$ and its reversal converge on the same sequence immediately:

\(\ds 7998 + 8997\) \(=\) \(\ds 16995\)




Sources