Absorption Laws (Boolean Algebras)
Jump to navigation
Jump to search
This proof is about Absorption Laws in the context of Boolean Algebra. For other uses, see Absorption Laws.
Theorem
Let $\struct {S, \vee, \wedge}$ be a Boolean algebra, defined as in Definition 1.
Then for all $a, b \in S$:
- $a = a \vee \paren {a \wedge b}$
- $a = a \wedge \paren {a \vee b}$
That is, $\vee$ absorbs $\wedge$, and $\wedge$ absorbs $\vee$.
Proof
Let $a, b \in S$.
Then:
\(\ds a \vee \paren {a \wedge b}\) | \(=\) | \(\ds \paren {a \wedge \top} \vee \paren {a \wedge b}\) | Boolean Algebra: Axiom $(BA_1 \ 3)$: $\top$ is the identity for $\wedge$ | |||||||||||
\(\ds \) | \(=\) | \(\ds a \wedge \paren {\top \vee b}\) | Boolean Algebra: Axiom $(BA_1 \ 2)$: $\wedge$ distributes over $\vee$ | |||||||||||
\(\ds \) | \(=\) | \(\ds a \wedge \top\) | Identities of Boolean Algebra also Zeroes | |||||||||||
\(\ds \) | \(=\) | \(\ds a\) | Boolean Algebra: Axiom $(BA_1 \ 3)$ $\top$ is the identity for $\wedge$ |
as desired.
$\Box$
The result:
- $a = a \wedge \paren {a \vee b}$
follows from the Duality Principle.
$\blacksquare$
Sources
- 1964: W.E. Deskins: Abstract Algebra ... (previous) ... (next): $\S 1.5$: Lemma $1.1$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Boolean algebra
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Boolean algebra