Absorption Laws (Logic)/Disjunction Absorbs Conjunction

From ProofWiki
Jump to navigation Jump to search

Theorem

$p \lor \paren {p \land q} \dashv \vdash p$


This can be expressed as two separate theorems:

Forward Implication

$p \lor \paren {p \land q} \vdash p$

Reverse Implication

$p \vdash p \lor \paren {p \land q}$


Proof by Truth Table

We apply the Method of Truth Tables.

As can be seen by inspection, the appropriate truth values match for all boolean interpretations.

$\begin{array}{|ccccc||c|} \hline p & \lor & (p & \land & q) & p \\ \hline \F & \F & \F & \F & \F & \F \\ \F & \F & \F & \F & \T & \F \\ \T & \T & \T & \F & \F & \T \\ \T & \T & \T & \T & \T & \T \\ \hline \end{array}$

$\blacksquare$


Proof 2

\(\ds p \lor \paren {p \land q}\) \(=\) \(\ds \paren {p \land \top} \lor \paren {p \land q}\) Conjunction with Tautology
\(\ds \) \(=\) \(\ds p \land \paren {\top \lor q}\) Conjunction is Left Distributive over Disjunction
\(\ds \) \(=\) \(\ds p \land \top\) Disjunction with Tautology
\(\ds \) \(=\) \(\ds p\) Conjunction with Tautology

$\blacksquare$


Also see


Sources