Action of Group on Coset Space is Group Action
Jump to navigation
Jump to search
Theorem
Let $G$ be a group whose identity is $e$.
Let $H$ be a subgroup of $G$.
Let $*: G \times G / H \to G / H$ be the action on the (left) coset space:
- $\forall g \in G, \forall g' H \in G / H: g * \paren {g' H} := \paren {g g'} H$
Then $G$ is a group action.
Proof
\(\ds a * \paren {b * g' H}\) | \(=\) | \(\ds a * \paren {\paren {b g'} H}\) | Definition of $*$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a \paren {b g'} } H\) | Definition of $*$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a b} g' H\) | Group Axiom $\text G 1$: Associativity |
demonstrating that $*$ satisfies Group Action Axiom $\text {GA} 2$.
Then:
\(\ds e * g' H\) | \(=\) | \(\ds \paren {e g'} H\) | Definition of $*$ | |||||||||||
\(\ds \) | \(=\) | \(\ds g'H\) | Group Axiom $\text G 2$: Existence of Identity Element |
demonstrating that $*$ satisfies Group Action Axiom $\text {GA} 1$.
$\blacksquare$
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): Chapter $6$: Cosets: Exercise $9$
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $2$: The Sylow Theorems: $\S 53$