All Infima Preserving Mapping is Upper Adjoint of Galois Connection/Lemma 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \preceq}$ be a complete lattice.

Let $\struct {T, \precsim}$ be an ordered set.

Let $g: S \to T$ be an all infima preserving mapping.

Let us define a mapping $d: T \to S$ as:

$\forall t \in T: \map d t := \map \inf {g^{-1} \sqbrk {t^\succsim} }$


Then:

$\forall t \in T: \map d t = \map \min {g^{-1} \sqbrk {t^\succsim} }$


Proof

$\forall t \in T: \map d t = \map \min {g^{-1} \sqbrk {t^\succsim} }$

Let $t \in T$.

By definition of $d$:

$\map d t = \map \inf {g^{-1} \sqbrk {t^\succsim} }$

By Image of Inverse Image:

$g \sqbrk {g^{-1} \sqbrk {t^\succsim} } \subseteq t^\succsim$

By Infimum of Subset and Infimum of Upper Closure of Element:

$t = \map \inf {t^\succsim} \precsim \map \inf {g \sqbrk {g^{-1} \sqbrk {t^\succsim} } }$

By definition of upper closure of element:

$\map \inf {g \sqbrk {g^{-1} \sqbrk {t^\succsim} } } \in t^\succsim$

By definition of complete lattice:

$g^{-1} \sqbrk {t^\succsim}$ admits an infimum

By definitions mapping preserves the infimum:

$\map \inf {g \sqbrk {g^{-1} \sqbrk {t^\succsim} } } = \map g {\map d t}$

Thus by definition of image of set:

$\map d t \in g^{-1} \sqbrk {t^\succsim}$

Thus

$\map d t = \map \min {g^{-1} \sqbrk {t^\succsim} }$

$\blacksquare$


Sources