Alternating Group on 4 Letters/Conjugacy Classes
Jump to navigation
Jump to search
Conjugacy Classes of the Alternating Group on 4 Letters
Let $A_4$ denote the Alternating Group on 4 Letters, whose Cayley table is given as:
- $\begin{array}{c|cccc|cccc|cccc} \circ & e & t & u & v & a & b & c & d & p & q & r & s \\ \hline e & e & t & u & v & a & b & c & d & p & q & r & s \\ t & t & e & v & u & b & a & d & c & q & p & s & r \\ u & u & v & e & t & c & d & a & b & r & s & p & q \\ v & v & u & t & e & d & c & b & a & s & r & q & p \\ \hline a & a & c & d & b & p & r & s & q & e & u & v & t \\ b & b & d & c & a & q & s & r & p & t & v & u & e \\ c & c & a & b & d & r & p & q & s & u & e & t & v \\ d & d & b & a & c & s & q & p & r & v & t & e & u \\ \hline p & p & s & q & r & e & v & t & u & a & d & b & c \\ q & q & r & p & s & t & u & e & v & b & c & a & d \\ r & r & q & s & p & u & t & v & e & c & b & d & a \\ s & s & p & r & q & v & e & u & t & d & a & c & b \\ \end{array}$
The conjugacy classes of $A_4$ are:
\(\ds \) | \(\) | \(\ds \set e\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {a, b, c, d}\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {p, q, r, s}\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {t, u, v}\) |
Proof
The elements of the Alternating Group on 4 Letters can be expressed in cycle notation thus:
\(\ds e\) | \(:=\) | \(\ds \text { the identity mapping}\) | ||||||||||||
\(\ds t\) | \(:=\) | \(\ds \tuple {1 2} \tuple {3 4}\) | ||||||||||||
\(\ds u\) | \(:=\) | \(\ds \tuple {1 3} \tuple {2 4}\) | ||||||||||||
\(\ds v\) | \(:=\) | \(\ds \tuple {1 4} \tuple {2 3}\) |
\(\ds a\) | \(:=\) | \(\ds \tuple {1 2 3}\) | ||||||||||||
\(\ds b\) | \(:=\) | \(\ds \tuple {1 3 4}\) | ||||||||||||
\(\ds c\) | \(:=\) | \(\ds \tuple {2 4 3}\) | ||||||||||||
\(\ds d\) | \(:=\) | \(\ds \tuple {1 4 2}\) |
\(\ds p\) | \(:=\) | \(\ds \tuple {1 3 2}\) | ||||||||||||
\(\ds q\) | \(:=\) | \(\ds \tuple {2 3 4}\) | ||||||||||||
\(\ds r\) | \(:=\) | \(\ds \tuple {1 2 4}\) | ||||||||||||
\(\ds s\) | \(:=\) | \(\ds \tuple {1 4 3}\) |
![]() | This needs considerable tedious hard slog to complete it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Finish}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): Chapter $6$: Cosets: Exercise $7$
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $10$: The Orbit-Stabiliser Theorem: Exercise $3$