Approximation to Stirling's Formula for Gamma Function

From ProofWiki
Jump to navigation Jump to search



Theorem

Let:

$D_\epsilon = \set {z \in \C : \cmod {\Arg z} < \pi - \epsilon,\ \cmod z > 1}$

where:

$\cmod {\Arg z}$ denotes the absolute value of the principal argument of $z$
$\cmod z$ denotes the modulus of $z$
$\epsilon \in \R_{>0}$.


Then for all $z \in D_\epsilon$, the gamma function of $z$ satisfies:

$\map \Gamma z = \sqrt {\dfrac {2 \pi} z} \paren {\dfrac z e}^z \paren {1 + \map \OO {z^{-1} } }$

where $\map \OO {z^{-1} }$ denotes big-O of $z^{-1}$.


Proof

From Gamma Function is Unique Extension of Factorial:

\(\text {(1)}: \quad\) \(\ds \paren {y + n}^y n!\) \(=\) \(\ds \paren {y + n}^y \map \Gamma {n + 1}\) Gamma Function Extends Factorial
\(\ds \) \(\le\) \(\ds \map \Gamma {y + n + 1}\)
\(\ds \) \(\le\) \(\ds \paren {n + 1}^y \map \Gamma {n + 1}\)
\(\ds \) \(=\) \(\ds \paren {n + 1}^y n!\)

for $0 < y \le 1$ and $n \in \N$.


Let $x$ be given.

Let $n + 1$ be the largest natural number such that $n + 1 \le x$.



Let $x = y + n + 1$, and thus $0 < y \le 1$.

Then:

\(\ds \frac {\map \Gamma x} {\sqrt {2 \pi} x^x x^{-1/2} e^{-x} }\) \(\le\) \(\ds \frac {\paren {n + 1}^y n!} {\sqrt {2 \pi} x^x x^{-1/2} e^{-x} }\) from $(1)$
\(\ds \) \(\sim\) \(\ds \frac {\paren {n + 1}^y n! \sqrt {2 \pi} n^n n^{1/2} e^{-n} } {\sqrt {2 \pi} x^x x^{-1/2} e^{-x} }\) Stirling's Formula
\(\ds \) \(=\) \(\ds \frac {\paren {n + 1}^y n! n^n n^{1/2} e^{-n} } {\paren {y + n + 1}^{y + n} \paren {y + n + 1}^{1/2} e^{-y - n - 1} }\)
\(\ds \) \(=\) \(\ds \paren {\frac {n + 1} {y + n + 1} }^y \paren {\frac n {y + n + 1} }^{1/2} \paren {1 + \frac {y + 1} n}^{-n} e^{y + 1}\)
\(\ds \) \(\to\) \(\ds 1 \cdot 1 \cdot \frac 1 {e^{y + 1} } e^{y + 1} \text { as } n \to \infty\)
\(\ds \) \(=\) \(\ds 1\)

Similarly for the right hand side.


The result follows from Gamma Function Extends Factorial.



$\blacksquare$


Also see


Sources