Arctangent Logarithmic Formulation

From ProofWiki
Jump to navigation Jump to search

Theorem

For any real number $x$:

$\arctan x = \dfrac 1 2 i \map \ln {\dfrac {1 - i x} {1 + i x} }$

where $\arctan x$ is the arctangent and $i^2 = -1$.


Proof

Assume $y \in \R$, $ -\dfrac \pi 2 \le y \le \dfrac \pi 2 $.

\(\ds y\) \(=\) \(\ds \arctan x\)
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(=\) \(\ds \tan y\)
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(=\) \(\ds i \frac {1 - e^{2 i y} } {1 + e^{2 i y} }\) Euler's Tangent Identity
\(\ds \leadstoandfrom \ \ \) \(\ds i x\) \(=\) \(\ds \frac {e^{2 i y} - 1} {e^{2 i y} + 1}\) $ i^2 = -1 $
\(\ds \leadstoandfrom \ \ \) \(\ds i x \paren {e^{2 i y} + 1}\) \(=\) \(\ds e^{2 i y} - 1\)
\(\ds \leadstoandfrom \ \ \) \(\ds i x e^{2 i y} + i x\) \(=\) \(\ds e^{2 i y} - 1\)
\(\ds \leadstoandfrom \ \ \) \(\ds e^{2 i y} - i x e^{2 i y}\) \(=\) \(\ds 1 + i x\)
\(\ds \leadstoandfrom \ \ \) \(\ds e^{2 i y}\) \(=\) \(\ds \frac {1 + i x} {1 - i x}\)
\(\ds \leadstoandfrom \ \ \) \(\ds e^{-2 i y}\) \(=\) \(\ds \frac {1 - i x} {1 + i x}\)
\(\ds \leadstoandfrom \ \ \) \(\ds -2 i y\) \(=\) \(\ds \map \ln {\frac {1 - i x} {1 + i x} }\)
\(\ds \leadstoandfrom \ \ \) \(\ds y\) \(=\) \(\ds \frac 1 2 i \map \ln {\frac {1 - i x} {1 + i x} }\)

$\blacksquare$


Also see