Area of Circle/Proof 1
Jump to navigation
Jump to search
Theorem
The area $A$ of a circle is given by:
- $A = \pi r^2$
where $r$ is the radius of the circle.
Proof
From Equation of Circle:
- $x^2 + y^2 = r^2$
Thus $y = \pm \sqrt {r^2 - x^2}$.
It follows that from the geometric interpretation of the definite integral:
\(\ds A\) | \(=\) | \(\ds \int_{-r}^r \paren {\sqrt {r^2 - x^2} - \paren {-\sqrt {r^2 - x^2} } } \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_{-r}^r 2 \sqrt {r^2 - x^2} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_{-r}^r 2 r \sqrt {1 - \frac {x^2} {r^2} } \rd x\) |
Let $x = r \sin \theta$ (note that we can do this because $-r \le x \le r$).
Thus $\theta = \map \arcsin {\dfrac x r}$ and $\rd x = r \cos \theta \rd \theta$.
\(\ds A\) | \(=\) | \(\ds \int_{\map \arcsin {\frac {-r} r} }^{\map \arcsin {\frac r r} } 2 r^2 \sqrt {1 - \frac {\paren {r \sin \theta}^2} {r^2} } \cos \theta \rd \theta\) | Integration by Substitution | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_{-\frac \pi 2}^{\frac \pi 2} 2 r^2 \sqrt {1 - \sin^2 \theta} \cos \theta \rd \theta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_{-\frac \pi 2}^{\frac \pi 2} 2 r^2 \sqrt {\cos^2 \theta} \cos \theta \rd \theta\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds r^2 \int_{-\frac \pi 2}^{\frac \pi 2} 2 \cos^2 \theta \rd \theta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds r^2 \int_{-\frac \pi 2}^{\frac \pi 2} \paren {1 + \map \cos {2 \theta} } \rd \theta\) | Double Angle Formula for Cosine: Corollary 1 | |||||||||||
\(\ds \) | \(=\) | \(\ds r^2 \intlimits {\theta + \frac 1 2 \map \sin {2 \theta} } {-\frac \pi 2} {\frac \pi 2}\) | from Definite Integral of Constant and Primitive of Cosine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds r^2 \paren {\frac \pi 2 + \frac 1 2 \map \sin {2 \cdot \frac {-\pi} 2} - \frac {-\pi} 2 - \frac 1 2 \map \sin {2 \cdot \frac \pi 2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds r^2 \paren {2 \cdot \frac \pi 2 + 2 \cdot \frac 1 2 \cdot 0}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \pi r^2\) |
$\blacksquare$
Sources
- 1944: R.P. Gillespie: Integration (2nd ed.) ... (previous) ... (next): Chapter $\text I$: $\S 1$. Area of a Circle