Argument of Negative Real Number is Pi

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R_{>0}$ be a positive real number.

Then:

$\arg \paren {-x} = \pi$

where $\arg$ denotes the argument of a complex number.


Proof

We have that:

$-x = -x + 0 i$

and so:

\(\ds \cmod {-x}\) \(=\) \(\ds \sqrt {\paren {-x}^2 + 0^2}\) Definition of Complex Modulus
\(\ds \) \(=\) \(\ds x\)


Hence:

\(\ds \cos \paren {\arg \paren {-x} }\) \(=\) \(\ds \dfrac {-x} x\) Definition of Argument of Complex Number
\(\ds \) \(=\) \(\ds -1\)
\(\ds \leadsto \ \ \) \(\ds \arg \paren {-x}\) \(=\) \(\ds \pi\) Cosine of Multiple of Pi


\(\ds \sin \paren {\arg \paren {-x} }\) \(=\) \(\ds \dfrac 0 x\) Definition of Argument of Complex Number
\(\ds \) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \arg \paren {-x}\) \(=\) \(\ds 0 \text { or } \pi\) Sine of Multiple of Pi


Hence:

$\arg \paren {-x} = \pi$

$\blacksquare$