Associative Operation/Examples
Jump to navigation
Jump to search
Examples of Associative Operations
$x \circ a \circ y$ Operation
Let $\struct {S, \circ}$ be an algebraic structure where $\circ$ is an associative operation.
Let $a \in S$ be an arbitrary element of $S$.
Let $*$ be the operation defined on $S$ by:
- $\forall x, y \in S: x * y := x \circ a \circ y$
Then $*$ is associative on $S$.
Arbitrary Non-Associative Order 3 Structure
Consider the algebraic structure of order $3$ defined by the Cayley table:
- $\begin{array}{c|cccc} \circ & a & b & c \\ \hline a & b & c & b \\ b & b & a & c \\ c & a & c & c \\ \end{array}$
\(\ds \paren {a \circ a} \circ b\) | \(=\) | \(\ds b \circ b\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a\) | ||||||||||||
\(\ds a \circ \paren {a \circ b}\) | \(=\) | \(\ds a \circ c\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds b\) |
demonstrating non-associativity.
Also note that $a \circ b \ne b \circ a$, so $\circ$ is non-commutative as well.
$x y + 1$ Operation on Reals
Let $\R$ denote the set of real numbers.
Let $\circ$ denote the operation on $\R$ defined as:
- $\forall x, y \in \R: x \circ y := x y + 1$
Then $\circ$ is not an associative operation, despite being commutative.