Axiom:Axiom of Infinity
Jump to navigation
Jump to search
Axiom
Set Theory
There exists a set containing:
That is:
- $\exists x: \paren {\paren {\exists y: y \in x \land \forall z: \neg \paren {z \in y} } \land \forall u: u \in x \implies u^+ \in x}$
Class Theory
Let $\omega$ be the class of natural numbers as constructed by the Von Neumann construction:
\(\ds 0\) | \(:=\) | \(\ds \O\) | ||||||||||||
\(\ds 1\) | \(:=\) | \(\ds 0 \cup \set 0\) | ||||||||||||
\(\ds 2\) | \(:=\) | \(\ds 1 \cup \set 1\) | ||||||||||||
\(\ds 3\) | \(:=\) | \(\ds 2 \cup \set 2\) | ||||||||||||
\(\ds \) | \(\vdots\) | \(\ds \) | ||||||||||||
\(\ds n + 1\) | \(:=\) | \(\ds n \cup \set n\) | ||||||||||||
\(\ds \) | \(\vdots\) | \(\ds \) |
Then $\omega$ is a set.
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): axiom of extensionality
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): axiom of extensionality