Axiom:Field Axioms

From ProofWiki
Jump to navigation Jump to search

Definition

The properties of a field are as follows.

For a given field $\struct {F, +, \circ}$, these statements hold true:

\((\text A 0)\)   $:$   Closure under addition      \(\ds \forall x, y \in F:\) \(\ds x + y \in F \)      
\((\text A 1)\)   $:$   Associativity of addition      \(\ds \forall x, y, z \in F:\) \(\ds \paren {x + y} + z = x + \paren {y + z} \)      
\((\text A 2)\)   $:$   Commutativity of addition      \(\ds \forall x, y \in F:\) \(\ds x + y = y + x \)      
\((\text A 3)\)   $:$   Identity element for addition      \(\ds \exists 0_F \in F: \forall x \in F:\) \(\ds x + 0_F = x = 0_F + x \)      $0_F$ is called the zero
\((\text A 4)\)   $:$   Inverse elements for addition      \(\ds \forall x \in F: \exists x' \in F:\) \(\ds x + x' = 0_F = x' + x \)      $x'$ is called a negative element
\((\text M 0)\)   $:$   Closure under product      \(\ds \forall x, y \in F:\) \(\ds x \circ y \in F \)      
\((\text M 1)\)   $:$   Associativity of product      \(\ds \forall x, y, z \in F:\) \(\ds \paren {x \circ y} \circ z = x \circ \paren {y \circ z} \)      
\((\text M 2)\)   $:$   Commutativity of product      \(\ds \forall x, y \in F:\) \(\ds x \circ y = y \circ x \)      
\((\text M 3)\)   $:$   Identity element for product      \(\ds \exists 1_F \in F, 1_F \ne 0_F: \forall x \in F:\) \(\ds x \circ 1_F = x = 1_F \circ x \)      $1_F$ is called the unity
\((\text M 4)\)   $:$   Inverse elements for product      \(\ds \forall x \in F^*: \exists x^{-1} \in F^*:\) \(\ds x \circ x^{-1} = 1_F = x^{-1} \circ x \)      
\((\text D)\)   $:$   Product is distributive over addition      \(\ds \forall x, y, z \in F:\) \(\ds x \circ \paren {y + z} = \paren {x \circ y} + \paren {x \circ z} \)      


These are called the field axioms.


Sources