Axiom:Integral Domain Axioms

From ProofWiki
Jump to navigation Jump to search

Definition

An integral domain is an algebraic structure $\struct {D, +, \circ}$, on which are defined two binary operations $\circ$ and $+$, which satisfy the following conditions:

\((\text A 0)\)   $:$   Closure under addition      \(\ds \forall a, b \in D:\) \(\ds a + b \in D \)      
\((\text A 1)\)   $:$   Associativity of addition      \(\ds \forall a, b, c \in D:\) \(\ds \paren {a + b} + c = a + \paren {b + c} \)      
\((\text A 2)\)   $:$   Commutativity of addition      \(\ds \forall a, b \in D:\) \(\ds a + b = b + a \)      
\((\text A 3)\)   $:$   Identity element for addition: the zero      \(\ds \exists 0_D \in D: \forall a \in D:\) \(\ds a + 0_D = a = 0_D + a \)      
\((\text A 4)\)   $:$   Inverse elements for addition: negative elements      \(\ds \forall a \in D: \exists a' \in D:\) \(\ds a + a' = 0_D = a' + a \)      
\((\text M 0)\)   $:$   Closure under product      \(\ds \forall a, b \in D:\) \(\ds a \circ b \in D \)      
\((\text M 1)\)   $:$   Associativity of product      \(\ds \forall a, b, c \in D:\) \(\ds \paren {a \circ b} \circ c = a \circ \paren {b \circ c} \)      
\((\text M 2)\)   $:$   Commutativity of product      \(\ds \forall a, b \in D:\) \(\ds a \circ b = b \circ a \)      
\((\text M 3)\)   $:$   Identity element for product: the unity      \(\ds \exists 1_D \in D: \forall a \in D:\) \(\ds a \circ 1_D = a = 1_D \circ a \)      
\((\text D)\)   $:$   Product is distributive over addition      \(\ds \forall a, b, c \in D:\) \(\ds a \circ \paren {b + c} = \paren {a \circ b} + \paren {a \circ c} \)      
\(\ds \paren {a + b} \circ c = \paren {a \circ c} + \paren {b \circ c} \)      
\((\text C)\)   $:$   $\struct {D, +, \circ}$ has no (proper) zero divisors      \(\ds \forall a, b \in D:\) \(\ds x \circ y = 0_D \implies x = 0_D \text{ or } y = 0_D \)      

These criteria are called the integral domain axioms.


Also presented as

These can also be presented as:

\((\text A)\)   $:$   $\struct {D, +}$ is an abelian group      
\((\text M)\)   $:$   $\struct {D, \circ}$ is a commutative monoid      
\((\text D)\)   $:$   $\circ$ distributes over $+$      
\((\text C)\)   $:$   $D$ has no (proper) zero divisors      


Also see


Sources