Axiom:Real Number/Axioms

From ProofWiki
(Redirected from Axiom:Real Number Axioms)
Jump to navigation Jump to search



Definition

The properties of the field of real numbers $\struct {\R, +, \times, \le}$ are as follows:

\((\R \text A 0)\)   $:$   Closure under addition      \(\ds \forall x, y \in \R:\) \(\ds x + y \in \R \)      
\((\R \text A 1)\)   $:$   Associativity of addition      \(\ds \forall x, y, z \in \R:\) \(\ds \paren {x + y} + z = x + \paren {y + z} \)      
\((\R \text A 2)\)   $:$   Commutativity of addition      \(\ds \forall x, y \in \R:\) \(\ds x + y = y + x \)      
\((\R \text A 3)\)   $:$   Identity element for addition      \(\ds \exists 0 \in \R: \forall x \in \R:\) \(\ds x + 0 = x = 0 + x \)      
\((\R \text A 4)\)   $:$   Inverse elements for addition      \(\ds \forall x: \exists \paren {-x} \in \R:\) \(\ds x + \paren {-x} = 0 = \paren {-x} + x \)      
\((\R \text M 0)\)   $:$   Closure under multiplication      \(\ds \forall x, y \in \R:\) \(\ds x \times y \in \R \)      
\((\R \text M 1)\)   $:$   Associativity of multiplication      \(\ds \forall x, y, z \in \R:\) \(\ds \paren {x \times y} \times z = x \times \paren {y \times z} \)      
\((\R \text M 2)\)   $:$   Commutativity of multiplication      \(\ds \forall x, y \in \R:\) \(\ds x \times y = y \times x \)      
\((\R \text M 3)\)   $:$   Identity element for multiplication      \(\ds \exists 1 \in \R, 1 \ne 0: \forall x \in \R:\) \(\ds x \times 1 = x = 1 \times x \)      
\((\R \text M 4)\)   $:$   Inverse elements for multiplication      \(\ds \forall x \in \R_{\ne 0}: \exists \frac 1 x \in \R_{\ne 0}:\) \(\ds x \times \frac 1 x = 1 = \frac 1 x \times x \)      
\((\R \text D)\)   $:$   Multiplication is distributive over addition      \(\ds \forall x, y, z \in \R:\) \(\ds x \times \paren {y + z} = \paren {x \times y} + \paren {x \times z} \)      
\((\R \text O 1)\)   $:$   Usual ordering is compatible with addition      \(\ds \forall x, y, z \in \R:\) \(\ds x > y \implies x + z > y + z \)      
\((\R \text O 2)\)   $:$   Usual ordering is compatible with multiplication      \(\ds \forall x, y, z \in \R:\) \(\ds x > y, z > 0 \implies x \times z > y \times z \)      
\((\R \text O 3)\)   $:$   $\struct {\R, +, \times, \le}$ is Dedekind complete      


These are called the real number axioms.


Sources