Axiom:Right Module Axioms

From ProofWiki
Jump to navigation Jump to search


Let $\struct {R, +_R, \times_R}$ be a ring.

Let $\struct {G, +_G}$ be an abelian group.

A right module over $R$ is an $R$-algebraic structure with one operation $\struct {G, +_G, \circ}_R$ which satisfies the following conditions:

\((\text {RM} 1)\)   $:$   Scalar Multiplication Right Distributes over Module Addition      \(\ds \forall \lambda \in R: \forall x, y \in G:\)    \(\ds \paren {x +_G y} \circ \lambda \)   \(\ds = \)   \(\ds \paren {x \circ \lambda} +_G \paren {y \circ \lambda} \)      
\((\text {RM} 2)\)   $:$   Scalar Multiplication Left Distributes over Scalar Addition      \(\ds \forall \lambda, \mu \in R: \forall x \in G:\)    \(\ds x \circ \paren {\lambda +_R \mu} \)   \(\ds = \)   \(\ds \paren {x \circ \lambda} +_G \paren {x\circ \mu} \)      
\((\text {RM} 3)\)   $:$   Associativity of Scalar Multiplication      \(\ds \forall \lambda, \mu \in R: \forall x \in G:\)    \(\ds x \circ \paren {\lambda \times_R \mu} \)   \(\ds = \)   \(\ds \paren {x \circ \lambda} \circ \mu \)      

These stipulations are called the right module axioms.

Also see