Axiom:Sigma-Ring Axioms/Formulation 1

From ProofWiki
Jump to navigation Jump to search


Let $\Sigma$ be a system of sets.

$\Sigma$ is a $\sigma$-ring if and only if the following axioms are satisfied:

\((\text {SR} 1)\)   $:$   Empty Set:    \(\ds \O \in \Sigma \)      
\((\text {SR} 2)\)   $:$   Closure under Set Difference:      \(\ds \forall A, B \in \Sigma:\) \(\ds A \setminus B \in \Sigma \)      
\((\text {SR} 3)\)   $:$   Closure under Countable Unions:      \(\ds \forall A_n \in \Sigma: n = 1, 2, \ldots:\) \(\ds \bigcup_{n \mathop = 1}^\infty A_n \in \Sigma \)      

These criteria are called the $\sigma$-ring axioms.

Also see