B-Algebra Identity: xy = 0 iff x = y

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {X, \circ}$ be a $B$-algebra.


Then:

$\forall x, y \in X: x \circ y = 0 \iff x = y$


Proof

Sufficient Condition

Suppose that $x = y$.

Then by $B$-Algebra Axiom $(\text A 1)$:

$x \circ y = x \circ x = 0$

$\Box$


Necessary Condition

Let $x, y \in X$ such that $x \circ y = 0$.

Then:

\(\ds x \circ y\) \(=\) \(\ds y \circ y\) $B$-Algebra Axiom $(\text A 1)$
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds y\) $B$-algebra operation is right cancellable


Hence the result.

$\blacksquare$