B-Algebra Power Law

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {X, \circ}$ be a $B$-algebra.

Let $n, m \in \N$ such that $n \ge m$.


Then:

$\forall x \in X: x^n \circ x^m = x^{n - m}$

where $x^k$ for $k \in \N$ denotes the $k$th power of the element $x$.


$B$-Algebra Power Law with Zero

$\forall x \in X: n, m \in \N_{>0} \implies x^m \circ x^n = 0 \circ x^{n - m}$


Proof

Proof by induction:

For all $n \in \N_{> 0}$, let $\map P n$ be the proposition:

$\forall m \in \N_{> 0}, m \le n: \forall x \in X: x^n \circ x^m = x^{n - m}$


Basis for the Induction

$\map P 1$ is true, as this just says:

$x \circ x = 0$

which follows from the definition of the zeroth power in $B$-algebra.

This is our basis for the induction.


Induction Hypothesis

Now we need to show that, if $\map P k$ is true, where $k \ge 2$, then it logically follows that $\map P {k + 1}$ is true.


So this is our induction hypothesis:

$\forall m \in \N_{> 0}, m \le k: \forall x \in X: x^k \circ x^m = x^{k - m}$


Then we need to show:

$\forall m \in \N_{> 0}, m \le k + 1: \forall x \in X: x^{k + 1} \circ x^m = x^{k + 1 - m}$


Induction Step

This is our induction step:


First we show that:

$\forall x \in X: x^{k + 1} \circ x = x^k$


Thus:

\(\ds x^{k + 1} \circ x\) \(=\) \(\ds \paren {x^k \circ \paren {0 \circ x} } \circ x\) Definition of $B$-Algebra Power of Element
\(\ds \) \(=\) \(\ds x^k \circ \paren {x \circ \paren {0 \circ \paren {0 \circ x} } }\) $B$-Algebra Axiom $(\text A 3)$
\(\ds \) \(=\) \(\ds x^k \circ \paren {\paren {x \circ x} \circ 0}\) $B$-Algebra Axiom $(\text A 3)$
\(\ds \) \(=\) \(\ds x^k \circ \paren {x \circ x}\) $B$-Algebra Axiom $(\text A 2)$
\(\ds \) \(=\) \(\ds x^k \circ 0\) $B$-Algebra Axiom $(\text A 1)$
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds x^{k + 1} \circ x\) \(=\) \(\ds x^k\) $B$-Algebra Axiom $(\text A 2)$

By induction, it follows that:

$\forall n \in \N_{>0}: \forall x \in X: x^n \circ x = x^{n - 1}$


Now let $1 \le m \le k$.

We have:

\(\ds x^{k + 1} \circ x^{m + 1}\) \(=\) \(\ds x^{k + 1} \circ \paren {x^m \circ \paren {0 \circ x} }\) Definition of $B$-Algebra Power of Element
\(\ds \) \(=\) \(\ds \paren {x^{k + 1} \circ x} \circ x^m\) $B$-Algebra Axiom $(\text A 3)$
\(\ds \) \(=\) \(\ds x^k \circ x^m\) from $(1)$
\(\ds \) \(=\) \(\ds x^{k - m}\) Induction Hypothesis

By induction, it follows that:

$\forall x \in X: \forall n, m \in \N: n \ge m \implies x^n \circ x^m = x^{n - m}$

$\blacksquare$