B-Algebra is Right Cancellable

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {X, \circ}$ be a $B$-algebra.


Then $\circ$ is right-cancellable for $X$. That is:

$\forall x, y, z \in X: x \circ z = y \circ z \implies x = y$


Proof

Let $x, y \in X$.

Then:

\(\ds \paren {x \circ y} \circ \paren {0 \circ y}\) \(=\) \(\ds x \circ \paren {\paren {0 \circ y} \circ \paren {0 \circ y} }\) $B$-Algebra Axiom $(\text A 3)$
\(\ds \) \(=\) \(\ds x \circ 0\) $B$-Algebra Axiom $(\text A 1)$
\(\ds \) \(=\) \(\ds x\) $B$-Algebra Axiom $(\text A 2)$


Now if for some $z \in X$ we have $x \circ z = y \circ z$, then also:

$\paren {x \circ z} \circ \paren {0 \circ z} = \paren {y \circ z} \circ \paren {0 \circ z}$

which by the above implies $x = y$.


Hence the result.

$\blacksquare$