Binomial Theorem/Hurwitz's Generalisation

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \paren {x + y}^n = \sum x \paren {x + \epsilon_1 z_1 + \cdots + \epsilon_n z_n}^{\epsilon_1 + \cdots + \epsilon_n - 1} \paren {y - \epsilon_1 z_1 - \cdots - \epsilon_n z_n}^{n - \epsilon_1 - \cdots - \epsilon_n}$

where the summation ranges over all $2^n$ choices of $\epsilon_1, \ldots, \epsilon_n = 0$ or $1$ independently.


Proof

Follows from this formula:

$(1): \quad \ds \sum x \paren {x + \epsilon_1 z_1 + \cdots + \epsilon_n z_n}^{\epsilon_1 + \cdots + \epsilon_n - 1} \paren {y + \paren {1 - \epsilon_1} z_1 - \cdots + \paren {1 - \epsilon_n} z_n}^{n - \epsilon_1 - \cdots - \epsilon_n} = \paren {x + y} \paren {x + y + z_1 + \cdots + z_n}^{n - 1}$




Source of Name

This entry was named for Adolf Hurwitz.


Sources

  • 1902: A. HurwitzÜber Abel's Verallgemeinerung der binomischen Formel (Acta Math. Vol. 26: pp. 199 – 203)