Body under Constant Acceleration/Velocity after Distance

From ProofWiki
Jump to navigation Jump to search

Theorem

SUVAT.png

Let $B$ be a body under constant acceleration $\mathbf a$.

Then:

$\mathbf v \cdot \mathbf v = \mathbf u \cdot \mathbf u + 2 \mathbf a \cdot \mathbf s$

where:

$\mathbf v$ is the velocity at time $t$
$\mathbf u$ is the velocity at time $t = 0$
$\mathbf s$ is the displacement of $B$ from its initial position at time $t$
$\cdot$ denotes the dot product.


Proof

From Body under Constant Acceleration: Velocity after Time

$\mathbf v = \mathbf u + \mathbf a t$

Then:

\(\ds \mathbf v \cdot \mathbf v\) \(=\) \(\ds \paren {\mathbf u + \mathbf a t} \cdot \paren {\mathbf u + \mathbf a t}\)
\(\ds \) \(=\) \(\ds \mathbf u \cdot \mathbf u + \mathbf u \cdot \mathbf a t + \mathbf a t \cdot \mathbf u + \paren {\mathbf a t} \cdot \paren {\mathbf a t}\) Dot Product Distributes over Addition
\(\ds \) \(=\) \(\ds \mathbf u \cdot \mathbf u + 2 \mathbf u \cdot \mathbf a t + \paren {\mathbf a t} \cdot \paren {\mathbf a t}\) Dot Product Operator is Commutative
\(\ds \) \(=\) \(\ds \mathbf u \cdot \mathbf u + 2 \mathbf u \cdot \mathbf a t + \mathbf a \cdot \mathbf a t^2\) Dot Product Associates with Scalar Multiplication
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds \mathbf u \cdot \mathbf u + \mathbf a \cdot \paren {2 \mathbf u t + \mathbf a t^2}\) Dot Product Distributes over Addition

From Body under Constant Acceleration: Distance after Time:

$\mathbf s = \mathbf u t + \dfrac {\mathbf a t^2} 2$

Substituting for $\mathbf s$ in $(1)$ gives:

$\mathbf v \cdot \mathbf v = \mathbf u \cdot \mathbf u + 2 \mathbf a \cdot \mathbf s$

and the proof is complete.

$\blacksquare$