Bounds of GCD for Sum and Difference Congruent Squares

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x, y, n$ be integers.

Let:

$x \not \equiv \pm y \pmod n$

and:

$x^2 \equiv y^2 \pmod n$

where $a \equiv b \pmod n$ denotes that $a$ is congruent to $b$ modulo $n$.


Then:

$1 < \gcd \set {x - y, n} < n$

and:

$1 < \gcd \set {x + y, n} < n$

where $\gcd \set {a, b}$ is the GCD of $a$ and $b$.


Proof

\(\ds x^2\) \(\equiv\) \(\ds y^2\) \(\ds \pmod n\)
\(\ds \leadsto \ \ \) \(\ds n\) \(\divides\) \(\ds \paren {x^2 - y^2}\)
\(\ds \leadsto \ \ \) \(\ds n\) \(\divides\) \(\ds \paren {x + y} \paren {x - y}\)
\(\ds \leadsto \ \ \) \(\ds p\) \(\divides\) \(\ds \paren {x + y} \paren {x - y}\) for all prime divisors $p$ of $n$
\(\ds \leadsto \ \ \) \(\ds p\) \(\divides\) \(\ds \paren {x - y}\)
\(\, \ds \lor \, \) \(\ds p\) \(\divides\) \(\ds \paren {x + y}\)


But since $x \not \equiv -y \pmod n$, then:

$n \nmid \paren {x + y}$

and since $x \not \equiv y \pmod n$, then:

$n \nmid \paren {x - y}$

Therefore:

$\gcd \set {x - y, n} < n$

and:

$\gcd \set {x + y, n} < n$


So if $p \divides \paren {x - y}$ then:

$1 < \gcd \set {x - y, n} < n$

and also there exists $q$ such that:

$q \divides n$
$q \divides \paren {x + y}$
$1 < q \le \gcd \set {x + y, n}$


Likewise if $p \divides \paren {x + y}$ then:

$1 < \gcd \set {x + y, n} < n$

and also there exists $q$ such that:

$q \divides n$
$q \divides \paren {x - y}$
$1 < q \le \gcd \set {x - y, n}$

$\blacksquare$