Canonical Injection is Injection/General Result

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S_1, \circ_1}, \struct {S_2, \circ_2}, \dotsc, \struct {S_j, \circ_j}, \dotsc, \struct {S_n, \circ_n}$ be algebraic structures with identities $e_1, e_2, \ldots, e_j, \ldots, e_n$ respectively.

The canonical injection:

$\ds \inj_j: \struct {S_j, \circ_j} \to \prod_{i \mathop = 1}^n \struct {S_i, \circ_i}$

defined as:

$\map {\inj_j} x = \tuple {e_1, e_2, \dotsc, e_{j - 1}, x, e_{j + 1}, \dotsc, e_n}$

is an injection.


Proof

Let:

$x, y \in S_j: \map {\inj_j} x = \map {\inj_j} y$

Then:

$\tuple {e_1, e_2, \dotsc, e_{j - 1}, x, e_{j + 1}, \dotsc, e_n} = \tuple {e_1, e_2, \dotsc, e_{j - 1}, y, e_{j + 1}, \dotsc, e_n}$

By Equality of Ordered Tuples, it follows directly that:

$x = y$

Thus the canonical injections are injective.

$\blacksquare$


Sources