Canonical P-adic Expansion of Rational is Eventually Periodic/Lemma 11

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $p$ be a prime number.

Let $a \in \Z, b \in Z_{> 0}$

Let:

$\forall n \in \N: \exists r_n \in \Z : \dfrac a b - \paren{p^{n + 1} \dfrac {r_n} b} \in \set{0, 1, \ldots, p^{n + 1} - 1}$


Then:

$\forall n \in \N : \dfrac {a - \paren {p^{n + 1} - 1} b } {p^{n + 1} } \le r_n \le \dfrac a {p^{n + 1} }$


Proof

We have:

\(\ds 0\) \(\le\) \(\, \ds \dfrac a b - \paren{p^{n + 1} \dfrac {r_n} b} \, \) \(\, \ds \le \, \) \(\ds p^{n + 1} - 1\)
\(\ds \leadsto \ \ \) \(\ds -\paren {p^{n + 1} - 1}\) \(\le\) \(\, \ds \paren{p^{n + 1} \dfrac {r_n} b} - \dfrac a b \, \) \(\, \ds \le \, \) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds -\paren {p^{n + 1} - 1} b\) \(\le\) \(\, \ds p^{n + 1} r_n - a \, \) \(\, \ds \le \, \) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds a - \paren {p^{n + 1} - 1} b\) \(\le\) \(\, \ds p^{n + 1} r_n \, \) \(\, \ds \le \, \) \(\ds a\)
\(\ds \leadsto \ \ \) \(\ds \dfrac {a - \paren {p^{n + 1} - 1} b} {p^{n + 1} }\) \(\le\) \(\, \ds r_n \, \) \(\, \ds \le \, \) \(\ds \dfrac a {p^{n + 1} }\)

The result follows.

$\blacksquare$