Cassini's Identity/Negative Indices

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z_{<0}$ be a negative integer.

Let $F_n$ be the $n$th Fibonacci number (as extended to negative integers).

Then Cassini's Identity:

$F_{n + 1} F_{n - 1} - F_n^2 = \paren {-1}^n$

continues to hold.


Proof

Let $n \in \Z_{> 0}$.

Then:

\(\ds F_{-\paren {n + 1} } F_{-\paren {n - 1} } - {F_{-n} }^2\) \(=\) \(\ds \paren {-1}^{n + 2} F_{n + 1} \paren {-1}^n F_{n - 1} - \paren {\paren {-1}^{n + 1} F_n}^2\) Fibonacci Number with Negative Index
\(\ds \) \(=\) \(\ds \paren {-1}^{2 n + 2} F_{n + 1} F_{n - 1} - \paren {-1}^{2 n + 2} F_n^2\)
\(\ds \) \(=\) \(\ds F_{n + 1} F_{n - 1} - F_n^2\) $-1$ to an even power is $1$

$\blacksquare$


Sources