Category:Cauchy-Bunyakovsky-Schwarz Inequality
This category contains pages concerning Cauchy-Bunyakovsky-Schwarz Inequality:
Semi-Inner Product Spaces
Let $\mathbb K$ be a subfield of $\C$.
Let $V$ be a semi-inner product space over $\mathbb K$.
Let $x, y$ be vectors in $V$.
Then:
- $\size {\innerprod x y}^2 \le \innerprod x x \innerprod y y$
Lebesgue $2$-Space
Let $\struct {X, \Sigma, \mu}$ be a measure space.
Let $f, g: X \to \R$ be $\mu$-square integrable functions, that is $f, g \in \map {\LL^2} \mu$, Lebesgue $2$-space.
Then:
- $\ds \int \size {f g} \rd \mu \le \norm f_2^2 \cdot \norm g_2^2$
where $\norm {\, \cdot \,}_2$ is the $2$-norm.
Complex Numbers
- $\ds \paren {\sum \cmod {w_i}^2} \paren {\sum \cmod {z_i}^2} \ge \cmod {\sum w_i z_i}^2$
where all of $w_i, z_i \in \C$.
Continuous Linear Transformation Space with Supremum Operator Norm
Let $\struct {X, \norm {\, \cdot \,}_X}$ and $\struct {Y, \norm {\, \cdot \,}_Y}$, $\struct {Z, \norm {\, \cdot \,}_Z}$ be normed vector spaces.
Let $A : Y \to Z$ and $B : X \to Y$ be continuous linear transformations.
Let $\norm {\, \cdot \,}$ be the supremum operator norm.
Let $\circ$ denote the composition.
Then:
- $\norm {A \circ B} \le \norm A \cdot \norm B$
Definite Integrals
Let $f$ and $g$ be real functions which are continuous on the closed interval $\closedint a b$.
Then:
- $\ds \paren {\int_a^b \map f t \, \map g t \rd t}^2 \le \int_a^b \paren {\map f t}^2 \rd t \int_a^b \paren {\map g t}^2 \rd t$
Pages in category "Cauchy-Bunyakovsky-Schwarz Inequality"
The following 14 pages are in this category, out of 14 total.
C
- Cauchy's Inequality
- Cauchy-Bunyakovsky-Schwarz Inequality
- Cauchy-Bunyakovsky-Schwarz Inequality for Definite Integrals
- Cauchy-Bunyakovsky-Schwarz Inequality for Inner Product Spaces
- Cauchy-Bunyakovsky-Schwarz Inequality/Also known as
- Cauchy-Bunyakovsky-Schwarz Inequality/Definite Integrals
- Cauchy-Bunyakovsky-Schwarz Inequality/Inner Product Spaces
- Cauchy-Bunyakovsky-Schwarz Inequality/Inner Product Spaces/Proof 1
- Cauchy-Bunyakovsky-Schwarz Inequality/Inner Product Spaces/Proof 2
- Cauchy-Bunyakovsky-Schwarz Inequality/Lebesgue 2-Space
- Cauchy-Schwarz Inequality/Complex Numbers
- Cauchy-Schwarz Inequality/Continuous Linear Transformation Space with Supremum Operator Norm