Category:Characteristic Functions

From ProofWiki
Jump to navigation Jump to search

This category contains results about Characteristic Functions in the context of Set Theory.
Definitions specific to this category can be found in Definitions/Characteristic Functions.

Set

Let $E \subseteq S$.

The characteristic function of $E$ is the function $\chi_E: S \to \set {0, 1}$ defined as:

$\map {\chi_E} x = \begin {cases}

1 & : x \in E \\ 0 & : x \notin E \end {cases}$

That is:

$\map {\chi_E} x = \begin {cases}

1 & : x \in E \\ 0 & : x \in \relcomp S E \end {cases}$ where $\relcomp S E$ denotes the complement of $E$ relative to $S$.


Relation

The concept of a characteristic function of a subset carries over directly to relations.


Let $\RR \subseteq S \times T$ be a relation.

The characteristic function of $\RR$ is the function $\chi_\RR: S \times T \to \set {0, 1}$ defined as:

$\map {\chi_\RR} {x, y} = \begin {cases}

1 & : \tuple {x, y} \in \RR \\ 0 & : \tuple {x, y} \notin \RR \end{cases}$


It can be expressed in Iverson bracket notation as:

$\map {\chi_\RR} {x, y} = \sqbrk {\tuple {x, y} \in \RR}$


More generally, let $\ds \mathbb S = \prod_{i \mathop = 1}^n S_i = S_1 \times S_2 \times \ldots \times S_n$ be the cartesian product of $n$ sets $S_1, S_2, \ldots, S_n$.

Let $\RR \subseteq \mathbb S$ be an $n$-ary relation on $\mathbb S$.

The characteristic function of $\RR$ is the function $\chi_\RR: \mathbb S \to \set {0, 1}$ defined as:

$\map {\chi_\RR} {s_1, s_2, \ldots, s_n} = \begin {cases}

1 & : \tuple {s_1, s_2, \ldots, s_n} \in \RR \\ 0 & : \tuple {s_1, s_2, \ldots, s_n} \notin \RR \end {cases}$


It can be expressed in Iverson bracket notation as:

$\map {\chi_\RR} {s_1, s_2, \ldots, s_n} = \sqbrk {\tuple {s_1, s_2, \ldots, s_n} \in \RR}$