Category:Characteristics of Fields

From ProofWiki
Jump to navigation Jump to search

This category contains results about Characteristics of Fields.
Definitions specific to this category can be found in Definitions/Characteristics of Fields.

As a field is a fortiori a ring, the definition of characteristic carries over directly from that of the characteristic of a ring :

Let $\struct {R, +, \circ}$ be a ring with unity whose zero is $0_R$ and whose unity is $1_R$.

Definition 1

For a natural number $n \in \N$, let $n \cdot x$ be defined as the power of $x$ in the context of the additive group $\struct {R, +}$:

$n \cdot x = \begin {cases}

0_R & : n = 0 \\ \paren {\paren {n - 1} \cdot x} + x & : n > 0 \end {cases}$

The characteristic $\Char R$ of $R$ is the smallest $n \in \N_{>0}$ such that $n \cdot 1_R = 0_R$.

If there is no such $n$, then $\Char R = 0$.

Definition 2

Let $g: \Z \to R$ be the initial homomorphism, with $\map g n = n \cdot 1_R$.

Let $\ideal p$ be the principal ideal of $\struct {\Z, +, \times}$ generated by $p$.

The characteristic $\Char R$ of $R$ is the positive integer $p \in \Z_{\ge 0}$ such that $\ideal p$ is the kernel of $g$.

Definition 3

The characteristic of $R$, denoted $\Char R$, is defined as follows.

Let $p$ be the order of $1_R$ in the additive group $\struct {R, +}$ of $\struct {R, +, \circ}$.

If $p \in \Z_{>0}$, then $\Char R := p$.

If $1_R$ is of infinite order, then $\Char R := 0$.