# Category:Class Union

Jump to navigation
Jump to search

This category contains results about Class Union.

Definitions specific to this category can be found in Definitions/Class Union.

Let $A$ and $B$ be two classes.

The **(class) union** $A \cup B$ of $A$ and $B$ is defined as the class of all sets $x$ such that either $x \in A$ or $x \in B$ or both:

- $x \in A \cup B \iff x \in A \lor x \in A$

or:

- $A \cup B = \set {x: x \in A \lor x \in B}$

### General Definition

Let $A$ be a class.

The **union of $A$** is:

- $\ds \bigcup A := \set {x: \exists y: x \in y \land y \in A}$

That is, the class of all elements of all elements of $A$ which are themselves sets.

## Subcategories

This category has the following 4 subcategories, out of 4 total.

## Pages in category "Class Union"

The following 12 pages are in this category, out of 12 total.