Category:Definitions/Binomial Coefficients
Jump to navigation
Jump to search
This category contains definitions related to Binomial Coefficients.
Related results can be found in Category:Binomial Coefficients.
Let $n \in \Z_{\ge 0}$ and $k \in \Z$.
Then the binomial coefficient $\dbinom n k$ is defined as:
- $\dbinom n k = \begin{cases} \dfrac {n!} {k! \paren {n - k}!} & : 0 \le k \le n \\ & \\ 0 & : \text { otherwise } \end{cases}$
where $n!$ denotes the factorial of $n$.
Subcategories
This category has the following 3 subcategories, out of 3 total.
Pages in category "Definitions/Binomial Coefficients"
The following 19 pages are in this category, out of 19 total.
B
- Definition:Binomial Coefficient
- Definition:Binomial Coefficient/Complex Numbers
- Definition:Binomial Coefficient/Historical Note
- Definition:Binomial Coefficient/Integers/Definition 1
- Definition:Binomial Coefficient/Integers/Definition 2
- Definition:Binomial Coefficient/Integers/Definition 3
- Definition:Binomial Coefficient/Multiindices
- Definition:Binomial Coefficient/Notation
- Definition:Binomial Coefficient/Real Numbers
- Definition:Binomial Coefficient/Technical Note