Category:Definitions/Compact Spaces
Jump to navigation
Jump to search
This category contains definitions related to Compact Spaces.
Related results can be found in Category:Compact Spaces.
A topological space $T = \struct {S, \tau}$ is compact if and only if every open cover for $S$ has a finite subcover.
Subcategories
This category has the following 4 subcategories, out of 4 total.
Pages in category "Definitions/Compact Spaces"
The following 63 pages are in this category, out of 63 total.
C
- Definition:Compact (Euclidean Space)
- Definition:Compact (Real Analysis)
- Definition:Compact Manifold
- Definition:Compact Set (Topology)
- Definition:Compact Set of Reals
- Definition:Compact Space
- Definition:Compact Space/Also defined as
- Definition:Compact Space/Euclidean Space
- Definition:Compact Space/Metric Space
- Definition:Compact Space/Metric Space/Complex
- Definition:Compact Space/Motivation
- Definition:Compact Space/Normed Vector Space/Subspace
- Definition:Compact Space/Real Analysis
- Definition:Compact Space/Topology
- Definition:Compact Space/Topology/Definition 1
- Definition:Compact Space/Topology/Definition 2
- Definition:Compact Space/Topology/Definition 3
- Definition:Compact Space/Topology/Definition 4
- Definition:Compact Space/Topology/Definition 5
- Definition:Compact Space/Topology/Definition 6
- Definition:Compact Space/Topology/Subspace
- Definition:Compact Space/Topology/Subspace/Definition 1
- Definition:Compact Space/Topology/Subspace/Definition 2
- Definition:Compact Subset of Real Euclidean Space
- Definition:Compact Subspace
- Definition:Compact Topological Space
- Definition:Compact Topological Subspace
- Definition:Countable at Infinity
- Definition:Countable Finite Intersection Axiom
- Definition:Countably Compact Space
- Definition:Countably Locally Finite Basis
- Definition:Countably Metacompact Space
- Definition:Countably Paracompact Space
H
L
S
- Definition:Sequentially Compact In Itself
- Definition:Sequentially Compact Space
- Definition:Sequentially Compact Space/In Itself
- Definition:Sigma-Compact Space
- Definition:Sigma-Discrete Basis
- Definition:Sigma-Locally Compact Space
- Definition:Sigma-Locally Finite Basis
- Definition:Strongly Locally Compact Space
- Definition:Strongly Locally Compact Space/Definition 1
- Definition:Strongly Locally Compact Space/Definition 2