Category:Definitions/Examples of Categories
Jump to navigation
Jump to search
This category contains definitions of examples of Category.
A category is an interpretation of the metacategory axioms within set theory.
Because a metacategory is a metagraph, this means that a category is a graph.
Let $\mathfrak U$ be a class of sets.
A metacategory $\mathbf C$ is a category if and only if:
- $(1): \quad$ The objects form a subset $\mathbf C_0$ or $\operatorname {ob} \ \mathbf C \subseteq \mathfrak U$
- $(2): \quad$ The morphisms form a subset $\mathbf C_1$ or $\operatorname{mor} \ \mathbf C$ or $\operatorname{Hom} \ \mathbf C \subseteq \mathfrak U$
Subcategories
This category has the following 12 subcategories, out of 12 total.
C
- Definitions/Category of Sets (6 P)
M
O
- Definitions/Order Categories (3 P)
P
S
- Definitions/Slice Categories (2 P)
Pages in category "Definitions/Examples of Categories"
The following 55 pages are in this category, out of 55 total.
C
- Definition:Category of Categories
- Definition:Category of Boolean Algebras
- Definition:Category of Left Modules
- Definition:Category of Modules
- Definition:Category of n-Dimensional Cobordism
- Definition:Category of Ordered Sets
- Definition:Category of Right Modules
- Definition:Category of Unitary Modules
- Definition:Category of Chain Complexes
- Definition:Category of Cocones
- Definition:Category of Cones
- Definition:Coslice Category